分析 (1)首先過(guò)點(diǎn)N作NH⊥AB于點(diǎn)H,過(guò)點(diǎn)M作MI⊥AD于點(diǎn)I,可得△NHB和△DIM是等腰直角三角形,四邊形AGNH和四邊形AEMI是矩形,則可求得BN=$\sqrt{2}$b,DM=$\sqrt{2}$a,繼而求得答案;
(2)由S△AMN=S△ABD-S△ABM-S△ADN,可得S△AMN=$\frac{1}{2}$c2-$\frac{1}{2}$c(c-a)-$\frac{1}{2}$c(c-b),繼而求得答案;
(3)易證得∴∠DMA=∠BAN,又由∠ABD=∠ADB=45°,可證得△ADM∽△NBA,然后由相似三角形的對(duì)應(yīng)邊成比例,求得答案.
解答 (1)證明:過(guò)點(diǎn)N作NH⊥AB于點(diǎn)H,過(guò)點(diǎn)M作MI⊥AD于點(diǎn)I,
∵四邊形ABCD是正方形,
∴∠ADB=∠ABD=45°,
∴△NHB和△DIM是等腰直角三角形,四邊形AGNH和四邊形AEMI是矩形,
∴BN=$\sqrt{2}$NH=$\sqrt{2}$AG=$\sqrt{2}$b,DM=$\sqrt{2}$MI=$\sqrt{2}$AE=$\sqrt{2}$a,
∴:$\frac{BN}{DM}$=$\frac{a}$;
(2)S△AMN=S△ABD-S△ABM-S△ADN
=$\frac{1}{2}$AB•AD-$\frac{1}{2}$AB•ME-$\frac{1}{2}$AD•NG
=$\frac{1}{2}$c2-$\frac{1}{2}$c(c-a)-$\frac{1}{2}$c(c-b)
=$\frac{1}{2}$c(c-c+a-c+b)
=$\frac{1}{2}$c(a+b-c);
(3)∵∠DMA=∠ABD+∠MAB=∠MAB+45°,∠BAN=∠MAB+∠MAN=∠MAB+45°,
∴∠DMA=∠BAN,
∵∠ABD=∠ADB=45°,
∴△ADM∽△NBA,
∴$\frac{DM}{AD}$=$\frac{AB}{BN}$,
∵DM=$\sqrt{2}$a,BN=$\sqrt{2}$b,
∴c2=2ab.
點(diǎn)評(píng) 此題屬于四邊形的綜合題.考查了正方形的性質(zhì)、等腰直角三角形的性質(zhì)以及相似三角形的判定與性質(zhì).注意準(zhǔn)確作出輔助線是解此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①② | B. | ③④ | C. | ①③ | D. | ②④ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com