【題目】如圖,為的外接圓,直徑.
(1)用尺規(guī)作圖,作出劣弧的中點(diǎn)(保留作圖痕跡,不寫(xiě)做法);
(2)連接,若,求弦的長(zhǎng).
【答案】(1)作圖見(jiàn)解析;(2).
【解析】
(1)利用線段的垂直平分線的作法進(jìn)一步畫(huà)出BC的垂直平分線與劣弧交于點(diǎn),此時(shí)點(diǎn)D即為所求;
(2)連接AD、BD,再連接OD交于點(diǎn),利用勾股定理求出BC,再根據(jù)垂徑定理得出,接著利用勾股定理在Rt△BED中求出,最后進(jìn)一步求出答案即可.
(1)如圖所示,點(diǎn)D即為所求;
(2)連接AD、BD,再連接OD交于點(diǎn),
∵AB為直徑,
∴∠ACB=90°,
∴在Rt△ABC中,,
又∵D是劣弧的中點(diǎn),
∴OD垂直平分BC,
∴,
∴在Rt△OBE中,,
∴,
∴在Rt△BED中,,
∴在Rt△ABD中,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把正方形紙片ABCD沿對(duì)邊上的兩點(diǎn)M、N所在的直線對(duì)折,使點(diǎn)B落在邊CD上的點(diǎn)E處,折痕為MN,其中CE=CD.若AB的長(zhǎng)為2,則MN的長(zhǎng)為( )
A.3B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線與軸交于兩點(diǎn),與軸交于,其中,點(diǎn)為拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)作平行交拋物線于,
(1)求拋物線的解析式;
(2)①當(dāng)兩點(diǎn)重合時(shí)時(shí),所在直線解析式為_____________.
②在①的條件下,取線段中點(diǎn),連接,判斷以點(diǎn)為頂點(diǎn)的四邊形是什么四邊形,并說(shuō)明理由?
(3)已知,連接,軸,交于,軸上有一動(dòng)點(diǎn),,的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=x2﹣4x+n(x>0)的圖象記為G1,將G1繞坐標(biāo)原點(diǎn)旋轉(zhuǎn)180°得到圖象G2,圖象G1和G2合起來(lái)記為圖象G.
(1)若點(diǎn)P(﹣1,2)在圖象G上,求n的值.
(2)當(dāng)n=﹣1時(shí).
①若Q(t,1)在圖象G上,求t的值.
②當(dāng)k≤x≤3(k<3)時(shí),圖象G對(duì)應(yīng)函數(shù)的最大值為5,最小值為﹣5,直接寫(xiě)出k的取值范圍.
(3)當(dāng)以A(﹣3,3)、B(﹣3,﹣1)、C(2,﹣1)、D(2,3)為頂點(diǎn)的矩形ABCD的邊與圖象G有且只有三個(gè)公共點(diǎn)時(shí),直接寫(xiě)出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為1的正方形ABCD中,點(diǎn)E、F分別在邊CD、AD上,連接BE、BF、EF,且有AF+CE=EF.
(1)求(AF+1)(CE+1)的值;
(2)探究∠EBF的度數(shù)是否為定值,并說(shuō)明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形的頂點(diǎn)分別在坐標(biāo)軸上,,點(diǎn)沿運(yùn)動(dòng),連接,當(dāng)為等腰三角形時(shí),點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若中,其中一個(gè)內(nèi)角是另一個(gè)內(nèi)角的一半,則稱為“半角三角形”.
(1)若為半角三角形,,則其余兩個(gè)角的度數(shù)為 .
(2)如圖1,在平行四邊形中,,點(diǎn)在邊上,以為折痕,將向上翻折,點(diǎn)恰好落在邊上的點(diǎn),若,求證:為半角三角形;
(3)如圖2,以的邊為直徑畫(huà)圓,與邊交于,與邊交于,已知的面積是面積的倍.
①求證:.
②若是半角三角形,,直接寫(xiě)出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在圖①②中,點(diǎn)E在矩形ABCD的邊BC上,且BE=AB,現(xiàn)要求僅用無(wú)刻度的直尺分別按下列要求畫(huà)圖.[保留畫(huà)(作)圖痕跡,不寫(xiě)畫(huà)(作)法]
(1)在圖①中,畫(huà)∠BAD的平分線;
(2)在圖②中,畫(huà)∠BCD的平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小龍蝦養(yǎng)殖大戶為了更好地發(fā)揮技術(shù)優(yōu)勢(shì),一次性收購(gòu)了20000kg小龍蝦,計(jì)劃養(yǎng)殖一段時(shí)間后再出售.已知每天放養(yǎng)的費(fèi)用相同,放養(yǎng)10天的總成本為30.4萬(wàn)元;放養(yǎng)20天的總成本為30.8萬(wàn)元(總成本=放養(yǎng)總費(fèi)用+收購(gòu)成本).
(1)設(shè)每天的放養(yǎng)費(fèi)用是a萬(wàn)元,收購(gòu)成本為b萬(wàn)元,求a和b的值;
(2)設(shè)這批小龍蝦放養(yǎng)t天后的質(zhì)量為m(kg),銷(xiāo)售單價(jià)為y元/kg.根據(jù)以往經(jīng)驗(yàn)可知:m與t的函數(shù)關(guān)系為;y與t的函數(shù)關(guān)系如圖所示.
①分別求出當(dāng)0≤t≤50和50<t≤100時(shí),y與t的函數(shù)關(guān)系式;
②設(shè)將這批小龍蝦放養(yǎng)t天后一次性出售所得利潤(rùn)為W元,求當(dāng)t為何值時(shí),W最大?并求出最大值.(利潤(rùn)=銷(xiāo)售總額﹣總成本)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com