【題目】在圖①②中,點(diǎn)E在矩形ABCD的邊BC上,且BE=AB,現(xiàn)要求僅用無刻度的直尺分別按下列要求畫圖.[保留畫()圖痕跡,不寫畫()]

1)在圖①中,畫∠BAD的平分線;

2)在圖②中,畫∠BCD的平分線.

【答案】1)見解析;(2)見解析

【解析】

(1)連接AE,等邊對(duì)等角可得∠BAE=BEA=45,再根據(jù)平行線的性質(zhì)即可得到AE是∠BAD的平分線;
(2)連接矩形ABCD的對(duì)角線,交于點(diǎn)O,可得AO=CO,再連接EO并延長(zhǎng),交BCP,根據(jù)△APO≌△CEO,可得AP=CE,得到四邊形AECP為平行四邊形,得到∠ECP=BEA=45,即可得到CP是∠BCD的平分線.

(1)如圖所示,AE即為所求;

∵點(diǎn)E在矩形ABCD的邊BC上,且BE=AB,

∴∠B=90,∠BAE=BEA=45

ADBC,

∴∠DAE=BEA=45,

∴∠DAE=BAE,

AE是∠BAD的平分線;

(2)如圖所示,CP即為所求;

∵四邊形ABCD是矩形,

APEC,

∴∠PAO=ECO,

點(diǎn)O是矩形ABCD對(duì)角線的交點(diǎn),

AO=CO,

∵∠POA=EOC,

∴△APO≌△CEO,

AP=CE,

又∵APEC,

∴四邊形AECP為平行四邊形,

AEPC

∴∠ECP=BEA=45

CP是∠BCD的平分線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春臨大地,學(xué)校決定給長(zhǎng)12米,寬9米的一塊長(zhǎng)方形展示區(qū)進(jìn)行種植改造現(xiàn)將其劃分成如圖兩個(gè)區(qū)域:區(qū)域Ⅰ矩形ABCD部分和區(qū)域Ⅱ四周環(huán)形部分,其中區(qū)域Ⅰ用甲、乙、丙三種花卉種植,且EF平分BD,G,H分別為AB,CD中點(diǎn).

1)若區(qū)域Ⅰ的面積為Sm2,種植均價(jià)為180/m2,區(qū)域Ⅱ的草坪均價(jià)為40/m2,且兩區(qū)域的總價(jià)為16500元,求S的值.

2)若ABBC45,區(qū)域Ⅱ左右兩側(cè)草坪環(huán)寬相等,均為上、下草坪環(huán)寬的2

①求ABBC的長(zhǎng);

②若甲、丙單價(jià)和為360/m2,乙、丙單價(jià)比為1312,三種花卉單價(jià)均為20的整數(shù)倍.當(dāng)矩形ABCD中花卉的種植總價(jià)為14520元時(shí),求種植乙花卉的總價(jià).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的外接圓,直徑

1)用尺規(guī)作圖,作出劣弧的中點(diǎn)(保留作圖痕跡,不寫做法);

2)連接,若,求弦的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高校學(xué)生會(huì)發(fā)現(xiàn)同學(xué)們就餐時(shí)剩余飯菜較多,浪費(fèi)嚴(yán)重,于是準(zhǔn)備在校內(nèi)倡導(dǎo)光盤行動(dòng),讓同學(xué)們珍惜糧食,為了讓同學(xué)們理解這次活動(dòng)的重要性,校學(xué)生會(huì)在某天午餐后,隨機(jī)調(diào)查了部分同學(xué)這餐飯菜的剩余情況,并將結(jié)果統(tǒng)計(jì)后繪制成了如圖所示的不完整的統(tǒng)計(jì)圖。

(1)這次被調(diào)查的同學(xué)共有 名;

(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)校學(xué)生會(huì)通過數(shù)據(jù)分析,估計(jì)這次被調(diào)查的所有學(xué)生一餐浪費(fèi)的食物可以供200人用一餐。據(jù)此估算,該校18000名學(xué)生一餐浪費(fèi)的食物可供多少人食用一餐?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于OABO的直徑,過點(diǎn)AO的切線交BC的延長(zhǎng)線于點(diǎn)E,在弦BC上取一點(diǎn)F,使AFAE,連接AF并延長(zhǎng)交O于點(diǎn)D

1)求證:∠B=∠CAD;

2)若CE2,∠B30°,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,AB,AC,BC6

(1)如圖1,點(diǎn)MAB的中點(diǎn),在線段AC上取點(diǎn)N,使△AMN△ABC相似,求線段MN的長(zhǎng);

(2)如圖2,是由100個(gè)邊長(zhǎng)為1的小正方形組成的10×10的正方形網(wǎng)格,設(shè)頂點(diǎn)在這些小正方形頂點(diǎn)

的三角形為格點(diǎn)三角形.

請(qǐng)你在所給的網(wǎng)格中畫出格點(diǎn)△A1B1C1△ABC全等(畫出一個(gè)即可,不需證明);

試直接寫出所給的網(wǎng)格中與△ABC相似且面積最大的格點(diǎn)三角形的個(gè)數(shù),并畫出其中一個(gè)(不需

證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,AD平分∠BAC,交BC于點(diǎn)D,點(diǎn)OAB上,O經(jīng)過AD兩點(diǎn),交AB于點(diǎn)E,交AC于點(diǎn)F

1)求證:BCO的切線;

2)若O半徑是2cmF是弧AD的中點(diǎn),求陰影部分的面積(結(jié)果保留π和根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ABC90°,以AB為直徑作⊙OAC于點(diǎn)D,連接BD

1)求證:∠A=∠CBD

2)若AB10,AD6M為線段BC上一點(diǎn),請(qǐng)寫出一個(gè)BM的值,使得直線DM與⊙O相切,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC的三個(gè)頂點(diǎn)坐標(biāo)分別是A(1,1),B(4,1),C(3,3).

(1)將ABC向下平移5個(gè)單位后得到A1B1C1,請(qǐng)畫出A1B1C1;

(2)將ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到A2B2C2,請(qǐng)畫出A2B2C2

(3)判斷以O,A1,B為頂點(diǎn)的三角形的形狀.(無須說明理由)

查看答案和解析>>

同步練習(xí)冊(cè)答案