【題目】隨著《流浪地球》的熱播,其同名科幻小說的銷量也急劇上升.為應(yīng)對(duì)這種變化,某網(wǎng)店分別花20000元和30000元先后兩次增購該小說,第二次的數(shù)量比第一次多500套,且兩次進(jìn)價(jià)相同.

1)該科幻小說第一次購進(jìn)多少套?

2)根據(jù)以往經(jīng)驗(yàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量是250套;銷售單價(jià)每上漲1元,每天的銷售量就減少10套.網(wǎng)店要求每套書的利潤不低于10元且不高于18元.

①直接寫出網(wǎng)店銷售該科幻小說每天的銷售量y(套)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式及自變量x的取值范圍;

②網(wǎng)店決定每銷售1套該科幻小說,就捐贈(zèng)a0a7)元給困難職工,每天扣除捐贈(zèng)后可獲得的最大利潤為1960元,求a的值.

【答案】1)該科幻小說第一次購進(jìn)1000套;(2)①y=﹣10x+50030≤x≤38);②a2

【解析】

1)設(shè)該科幻小說第一次購進(jìn)m套,根據(jù)題意列方程即可得到結(jié)論;

2)根據(jù)題意列函數(shù)關(guān)系式即可;

3)設(shè)每天扣除捐贈(zèng)后可獲得利潤為w元.根據(jù)題意得到w=(x-20-a)(-10x+500)=-10x2+10a+700x500a1000030≤x≤38)求得對(duì)稱軸為x35+a

①若0a6,則,則當(dāng)x35+a時(shí),w取得最大值,解方程得到a12,a258,于是得到a2;

②若6a7,則3835a,則當(dāng)30≤x≤38時(shí),wx的增大而增大;解方程得到a,但6a7,故舍去.于是得到結(jié)論.

解:(1)設(shè)該科幻小說第一次購進(jìn)套,

,

經(jīng)檢驗(yàn),當(dāng)時(shí),,則是原方程的解,

答:該科幻小說第一次購進(jìn)1000套;

2)根據(jù)題意得,;

3)設(shè)每天扣除捐贈(zèng)后可獲得利潤為元.

對(duì)稱軸為,

①若,則,則當(dāng)時(shí),取得最大值,

,,

,則;

②若,則,則當(dāng)時(shí),的增大而增大;

當(dāng)時(shí),取得最大值,則,

,但,故舍去.

綜上所述,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在新的教學(xué)改革的推動(dòng)下,某中學(xué)初三年級(jí)積極推進(jìn)走班制教學(xué).為了了解一段時(shí)間以來“至善班”的學(xué)習(xí)效果,年級(jí)組織了多次定時(shí)測(cè)試,現(xiàn)隨機(jī)選取甲、乙兩個(gè)“至善班”,從中各抽取20名同學(xué)在某一次定時(shí)測(cè)試中的數(shù)學(xué)成績(jī),其結(jié)果記錄如下:

收集數(shù)據(jù):

“至善班”甲班的20名同學(xué)的數(shù)學(xué)成績(jī)統(tǒng)計(jì)(滿分為100)(單位:分)86 90 60 76 92 83 56 76 85 70 96 96 90 68 78 80 68 96 85 81

“至善班”乙班的20名同學(xué)的數(shù)學(xué)成績(jī)統(tǒng)計(jì)(滿分為100)(單位:分)78 96 75 76 82 87 60 54 87 72 100 82 78 86 70 92 76 80 98 78

整理數(shù)據(jù):(成績(jī)得分用x表示)

分?jǐn)?shù)

數(shù)量

班級(jí)

0≤x60

60≤x70

70≤x80

80≤x90

90≤x100

甲班(人數(shù))

1

3

4

6

6

乙班(人數(shù))

1

1

8

6

4

分析數(shù)據(jù),并回答下列問題:

1)完成下表:

平均數(shù)

中位數(shù)

眾數(shù)

甲班

80.6

82

a   

乙班

80.35

b   

78

2)在“至善班”甲班的扇形圖中,成績(jī)?cè)?/span>70≤x80的扇形中,所對(duì)的圓心角α的度數(shù)為   ,估計(jì)全部“至善班”的1600人中優(yōu)秀人數(shù)為   人.(成績(jī)大于等于80分為優(yōu)秀)

3)根據(jù)以上數(shù)據(jù),你認(rèn)為“至善班”   (填“甲”或“乙”)所選取做樣本的同學(xué)的學(xué)習(xí)效果更好一些,你所做判斷的理由是:①   ;②   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一組數(shù)據(jù)a、b、c的平均數(shù)為5,方差為4,那么數(shù)據(jù)a+2、b+2、c+2的平均數(shù)和方差分別為( 。

A. 7,6 B. 7,4 C. 5,4 D. 以上都不對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】汽車超速行駛是交通安全的重大隱患,為了有效降低交通事故的發(fā)生,許多道路在事故易發(fā)路段設(shè)置了區(qū)間測(cè)速如圖,學(xué)校附近有一條筆直的公路l,其間設(shè)有區(qū)間測(cè)速,所有車輛限速40千米/小時(shí)數(shù)學(xué)實(shí)踐活動(dòng)小組設(shè)計(jì)了如下活動(dòng):在l上確定A,B兩點(diǎn),并在AB路段進(jìn)行區(qū)間測(cè)速.在l外取一點(diǎn)P,作PCl,垂足為點(diǎn)C.測(cè)得PC=30米,∠APC=71°,BPC=35°.上午9時(shí)測(cè)得一汽車從點(diǎn)A到點(diǎn)B用時(shí)6秒,請(qǐng)你用所學(xué)的數(shù)學(xué)知識(shí)說明該車是否超速.(參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y3x與反比例函數(shù)y(k0)的圖象交于AB兩點(diǎn),點(diǎn)P在以C(3,0)為圓心,1為半徑的⊙C上,QAP的中點(diǎn),已知OQ長的最大值為2,則k的值為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為5的⊙O中,弦AB=8,P是弦AB所對(duì)的優(yōu)弧上的動(dòng)點(diǎn),連接AP,過點(diǎn)AAP的垂線交射線PB于點(diǎn)C,當(dāng)PAB是等腰三角形時(shí),線段BC的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,點(diǎn)C⊙O上,過點(diǎn)C的直線與AB的延長線交于點(diǎn)PAC=PC,∠COB=2∠PCB.

1)求證:PC⊙O的切線;

2)求證:BC=AB;

3)點(diǎn)M是弧AB的中點(diǎn),CMAB于點(diǎn)N,若AB=4,求MNMC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax22a2x(a0)的對(duì)稱軸與x軸交于點(diǎn)P

1)求點(diǎn)P的坐標(biāo)(用含a的代數(shù)式表示);

2)記函數(shù)y=x+2(1x2)的圖象為圖形M,若拋物線與圖形M恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)的圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為菱形,以AD為直徑作⊙OAB于點(diǎn)F,連接DB交⊙O于點(diǎn)H,EBC上的一點(diǎn),且BEBF,連接DE

1)求證:DE是⊙O的切線.

2)若BF2,BD2,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案