【題目】如圖,C為線段AD上一點(diǎn),點(diǎn)BCD的中點(diǎn),AD=8cm,BD=1cm

(1)AC的長(zhǎng)

(2)若點(diǎn)E在直線AD,EA=2cm,BE的長(zhǎng)

【答案】(1)6;(2)9cm5cm.

【解析】

1)先根據(jù)點(diǎn)BCD的中點(diǎn),BD=1cm求出線段CD的長(zhǎng),再根據(jù)AC=AD-CD即可得出結(jié)論;

2)由于不知道E點(diǎn)的位置,故應(yīng)分E在點(diǎn)A的左邊與E在點(diǎn)A的右邊兩種情況進(jìn)行解答.

(1)∵點(diǎn)BCD的中點(diǎn),BD=1cm

CD=2BD=2cm,

AC=AD-BDAD=8cm,

AC=8-2=6cm

(2)∵點(diǎn)BCD的中點(diǎn),BD=1cm,

BC=BD=1cm,

①如圖1,點(diǎn)E在線段BA的延長(zhǎng)線上時(shí),

BE=AE+AC+CB=2+6+1=9cm;

②如圖2,點(diǎn)E在線段BA上時(shí),

BE=AB-AE=AC+CB-AE=6+1-2=5cm,

綜上,BE的長(zhǎng)為9cm5cm.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一條數(shù)軸在原點(diǎn)O和點(diǎn)B處各折一下,得到一條“折線數(shù)軸”.圖中點(diǎn)A表示﹣11,點(diǎn)B表示10,點(diǎn)C表示18,我們稱點(diǎn)A和點(diǎn)C在數(shù)軸上相距29個(gè)長(zhǎng)度單位.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2單位/秒的速度沿著“折線數(shù)軸”的正方向運(yùn)動(dòng),從點(diǎn)O運(yùn)動(dòng)到點(diǎn)B期間速度變?yōu)樵瓉?lái)的一半,之后立刻恢復(fù)原速;同時(shí),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以1單位/秒的速度沿著數(shù)軸的負(fù)方向運(yùn)動(dòng),從點(diǎn)B運(yùn)動(dòng)到點(diǎn)O期間速度變?yōu)樵瓉?lái)的兩倍,之后也立刻恢復(fù)原速.設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

問(wèn):(1)動(dòng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)至C點(diǎn)需要多少時(shí)間?

2P、Q兩點(diǎn)相遇時(shí),求出相遇點(diǎn)M所對(duì)應(yīng)的數(shù)是多少;

3)求當(dāng)t為何值時(shí),P、O兩點(diǎn)在數(shù)軸上相距的長(zhǎng)度與Q、B兩點(diǎn)在數(shù)軸上相距的長(zhǎng)度相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙O中,AC為直徑,MAMB分別切⊙O于點(diǎn)A、B

(1)如圖①,若∠BAC=23°,求∠AMB的大;

(Ⅱ)如圖②,過(guò)點(diǎn)BBDMA,交AC于點(diǎn)E,交⊙O于點(diǎn)D,若BD=MA,求∠AMB的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了讓同學(xué)們了解自己的體育水平,初二 1 班的體育老師對(duì)全班 45 名學(xué)生進(jìn)行了一次體育模擬測(cè)試(得分均為整數(shù)),成績(jī)滿分為 10 分,1 班的體育委員根據(jù)這次測(cè)試成績(jī),制作了統(tǒng)計(jì)圖和分析表如下:

根據(jù)以上信息,解答下列問(wèn)題

1)這個(gè)班共有男生 人,共有女生 人;

2)求初二 1 班女生體育成績(jī)的眾數(shù)是 ,男生體育成績(jī)的中位數(shù)是 。

3)若全年級(jí)有 630 名學(xué)生,體育測(cè)試 9 分及以上的成績(jī)?yōu)?/span> A 等,試估計(jì)全年級(jí)體育測(cè)試成績(jī)達(dá)到 A 等的有多少名學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在學(xué)習(xí)絕對(duì)值后,我們知道,表示數(shù)a在數(shù)軸上的對(duì)應(yīng)點(diǎn)與原點(diǎn)的距離,如:5表示5在數(shù)軸上的對(duì)應(yīng)點(diǎn)到原點(diǎn)的距離.,即表示5、0在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離,類似的,有:表示53在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離;,所以表示5、-3在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離一般地,點(diǎn)AB在數(shù)軸上分別表示有理數(shù)a、b,那么A、B之間的距離可表示為.

請(qǐng)根據(jù)絕對(duì)值的意義并結(jié)合數(shù)軸解答下列問(wèn)題:

1)數(shù)軸上表示23的兩點(diǎn)之間的距離是________;數(shù)軸上P、Q兩點(diǎn)的距離為3,點(diǎn)P表示的數(shù)是2,則點(diǎn)Q表示的數(shù)是________.

2)點(diǎn)A、B、C在數(shù)軸上分別表示有理數(shù)x、-31,那么AB的距離與AC的距離之和可表示為________(用含絕對(duì)值的式子表示);滿足x的值為________

3)試求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(2,4),B(3,2),C(6,3).

(1)畫(huà)出△ABC關(guān)于x軸對(duì)稱的△ABC;

(2)以M點(diǎn)為位似中心,在網(wǎng)格中畫(huà)出△ABC的位似圖形△ABC,使△A2B2C2與△ABC的相似比為2:1.

(3)請(qǐng)寫出(2)中放大后的△ABC中AB邊的中點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在研究位似問(wèn)題時(shí),甲、乙同學(xué)的說(shuō)法如下:

甲:如圖①,已知矩形ABCD和矩形EFGO在平面直角坐標(biāo)系中,點(diǎn)BF的坐標(biāo)分別為(﹣4,4),(2,1).若矩形ABCD和矩形EFGO是位似圖形,點(diǎn)P(點(diǎn)PGC上)是位似中心,則點(diǎn)P的坐標(biāo)為(0,2).

圖① 圖②

乙:如圖②,正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度,以點(diǎn)C為位似中心,在網(wǎng)格中畫(huà)△A1B1C1,使△A1B1C1與△ABC位似,且△A1B1C1與△ABC的位似比為2:1,則點(diǎn)B1的坐標(biāo)為(4,0).

對(duì)于兩人的觀點(diǎn),下列說(shuō)法正確的是( )

A. 兩人都對(duì) B. 兩人都不對(duì) C. 甲對(duì)乙不對(duì) D. 甲不對(duì)乙對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰梯形 ABCD 中,ADBC,ABCD.點(diǎn) P 為底邊 BC 的延長(zhǎng)線上任意一點(diǎn),PEAB E,PFDC F,BMDC M.請(qǐng)你探究線段 PE、PFBM 之間的數(shù)量關(guān)系:

______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校課外興趣小組在本校學(xué)生中開(kāi)展“感動(dòng)中國(guó)2013年度人物”先進(jìn)事跡知曉情況專題調(diào)查活動(dòng),采取隨機(jī)抽樣的方式進(jìn)行問(wèn)卷調(diào)查,問(wèn)卷調(diào)查的結(jié)果分為A、B、C、D四類.其中,A類表示“非常了解”,B類表示“比較了解”,C類表示“基本了解”,D類表示“不太了解”,劃分類別后的數(shù)據(jù)整理如下表:

類別

A

B

C

D

頻數(shù)

30

40

24

b

頻率

a

0.4

0.24

0.06

(1)表中的a=   ,b=   

(2)根據(jù)表中數(shù)據(jù),求扇形統(tǒng)計(jì)圖中類別為B的學(xué)生數(shù)所對(duì)應(yīng)的扇形圓心角的度數(shù);

(3)若該校有學(xué)生1000名,根據(jù)調(diào)查結(jié)果估計(jì)該校學(xué)生中類別為C的人數(shù)約為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案