【題目】如圖1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,
操作示例
我們可以取直角梯形ABCD的一腰CD的中點P,過點P作PE∥AB,裁掉△PEC,并將△PEC拼接到△PFD的位置,構(gòu)成新的圖形(如圖2).
思考發(fā)現(xiàn)
小明在操作后發(fā)現(xiàn),該剪拼方法就是先將△PEC繞點P逆時針旋轉(zhuǎn)180°到△PFD的位置,易知PE與PF在同一條直線上.又因為在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,則∠FDP+∠ADP=180°,所以AD和DF在同一條直線上,那么構(gòu)成的新圖形是一個四邊形,進(jìn)而根據(jù)平行四邊形的判定方法,可以判斷出四邊形ABEF是一個平行四邊形,而且還是一個特殊的平行四邊形——矩形.
1.圖2中,矩形ABEF的面積是 ;(用含a,b,c的式子表示)
2.類比圖2的剪拼方法,請你就圖3(其中AD∥BC)和圖4(其中AB∥DC)的兩種情形分別畫出剪拼成一個平行四邊形的示意圖.
3.小明通過探究后發(fā)現(xiàn):在一個四邊形中,只要有一組對邊平行,就可以剪拼成平行四邊形.
如圖5的多邊形中,AE=CD,AE∥CD,能否象上面剪切方法一樣沿一條直線進(jìn)行剪切,拼成一個平行四邊形?若能,請你在圖中畫出剪拼的示意圖并作必要的文字說明;若不能,簡要說明理由.
【答案】(1);(2)見解析; (3)見解析.
【解析】
(1)矩形ABEF的面積實際是原直角梯形的面積=(上底+下底)×高÷2;
(2)由圖可以看出AD∥BC,那么仿照圖2可找到點CD中點,過中點作AB的平行線即可得到平行四邊形;同法過AD中點作BC的平行線作出圖3中的平行四邊形.
(3)過點B作VZ∥AE,證得△AVQ≌△BSQ,△SBT≌△GCT即可得解.
解:(1)根據(jù)梯形的面積公式,直接得出答案:;
(2)如圖所示;分別取AB、BC的中點F、H,連接FH并延長分別交AE、CD于點M、N,將△AMF與△CNH一起拼接到△FBH位置
(3)過點B作VZ∥AE,
∵Q,T分別是AB,BC中點,
∴△AVQ≌△BSQ,
△SBT≌△GCT,
∴符合要求.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式了的平方,如3+2=(1+)2.善于思考的小明進(jìn)行了以下探索:
若設(shè)a+b=(m+n)2=m2+2n2+2mn(其中a、b、m、n均為整數(shù)),
則有a=m2+2n2,b=2mn.
這樣小明就找到了一種把類似a+b的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
(1)若a+b=(m+n)2,當(dāng)a、b、m、n均為整數(shù)時,用含m、n的式子分別表示a、b,得:a= ,b= ;
(2)若a+6=(m+n)2,且a、m、n均為正整數(shù),求a的值;
(3)化簡:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=mx2+2mx+n經(jīng)過A(﹣3,0),C(0,﹣)兩點,與x軸交于另一點B.
(1)求經(jīng)過A,B,C三點的拋物線的解析式;
(2)過點C作CE∥x軸交拋物線于點E,寫出點E的坐標(biāo),并求AC、BE的交點F的坐標(biāo)
(3)若拋物線的頂點為D,連結(jié)DC、DE,四邊形CDEF是否為菱形?若是,請證明;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)舉行“中國夢校園好聲音”歌手大賽,高、初中部根據(jù)初賽成績,各選出5名選手組成初中代表隊和高中代表隊參加學(xué)校決賽.兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示.
(1)根據(jù)圖示填寫下表;
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
初中部 | 85 | ||
高中部 | 85 | 100 |
(2)結(jié)合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好;
(3)計算兩隊決賽成績的方差并判斷哪一個代表隊選手成績較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將繞點順時針旋轉(zhuǎn)得到,使點的對應(yīng)點恰好落在邊上,點的對應(yīng)點為,連接,其中有:①;②;③;④,四個結(jié)論,則結(jié)論一定正確的有( )個
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:等腰△ABC的底邊BC長為6,面積是18,腰AC的垂直平分線EF分別交AC,AB邊于E,F點.若點D為BC邊的中點,點M為線段EF上一動點,則△CDM周長的最小值為( 。
A. 6 B. 8 C. 9 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班將舉行“數(shù)學(xué)知識競賽”活動,班長安排小明購買獎品,下面兩圖是小明買回獎品時與班長的對話情境:
請根據(jù)上面的信息,解決問題:
(1)試計算兩種筆記本各買了多少本?
(2)請你解釋:小明為什么不可能找回68元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com