【題目】201712月,旗團(tuán)委號召各校組織開展捐贈衣物的暖冬行動某校七年級六個班參加了這次捐贈活動,若每班捐贈衣物以100件為基準(zhǔn),超過的件數(shù)用正數(shù)表示,不足的件數(shù)用負(fù)數(shù)表示,記錄如下:

班級

一班

二班

三班

四班

五班

六班

人數(shù)

40

43

45

44

40

38

件數(shù)

捐贈衣物最多的班比最少的班多多少件?

該校七年級學(xué)生共捐贈多少件衣物?該校七年級學(xué)生平均每人捐贈多少件衣物?

【答案】 捐贈衣物最多的班比最少的班多26件; 該校七年級學(xué)生共捐贈650件衣物,平均每人捐贈2.6件衣物.

【解析】

(1)求出捐贈衣物最多的班額,捐贈衣物最少的班額,然后相減即可;

(2)用標(biāo)準(zhǔn)捐贈衣物數(shù)加上記錄的各班捐贈衣物數(shù)的和,計(jì)算即可得解.

,

答:捐贈衣物最多的班比最少的班多26件;

,

,

答:該校七年級學(xué)生共捐贈650件衣物,平均每人捐贈件衣物.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△CDE均為等邊三角形,且點(diǎn)B,C,D在同一直線上,連結(jié)AD,BE,分別交CEAC于點(diǎn)G,H,連結(jié)GH.

(1)請說出AD=BE的理由;

(2)試說出△BCH≌△ACG的理由;

(3)試猜想△CGH是什么特殊的三角形,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點(diǎn),將△ABP沿BP翻折至△EBP,PE與CD相交于點(diǎn)O,BE與CD相交于點(diǎn)G,且OE=OD,則AP的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為更好地開展“傳統(tǒng)文化進(jìn)校園”活動,隨機(jī)抽查了部分學(xué)生,了解他們最喜愛的傳統(tǒng)文化項(xiàng)目類型(分為書法、圍棋、戲劇、國畫共4類),并將統(tǒng)計(jì)結(jié)果繪制成如圖不完整的頻數(shù)分布表及頻數(shù)分布條形圖.
最喜愛的傳統(tǒng)文化項(xiàng)目類型頻數(shù)分布表

項(xiàng)目類型

頻數(shù)

頻率

書法類

18

a

圍棋類

14

0.28

喜劇類

8

0.16

國畫類

b

0.20

根據(jù)以上信息完成下列問題:

(1)直接寫出頻數(shù)分布表中a的值;
(2)補(bǔ)全頻數(shù)分布條形圖;
(3)若全校共有學(xué)生1500名,估計(jì)該校最喜愛圍棋的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD的對角線AC,BD相交于點(diǎn)O,延長AB至點(diǎn)E,使BE=AB,連接CE.

(1)求證:四邊形BECD是平行四邊形;
(2)若∠E=60°,AC=4 ,求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果店去年38月銷售吐魯番葡萄、哈密瓜的情況如下表:

3

4

5

6

7

8

吐魯番葡萄(單位:百公斤)

4

8

5

8

10

13

哈密瓜(單位:百公斤)

8

7

9

7

10

7

(1)請你根據(jù)以上數(shù)據(jù)填寫下表:

平均數(shù)/百公斤

方差

吐魯番葡萄

8

9

哈密瓜

(2)請你根據(jù)上述信息,對這兩種水果在去年3月份至8月份的銷售情況進(jìn)行分析.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為等邊三角形ABC內(nèi)的一點(diǎn),且P到三個頂點(diǎn)AB,C的距離分別為3,4,5,則ABC的面積為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a、b、c滿足|a﹣|++(c﹣42=0.

(1)求a、b、c的值;

(2)判斷以a、b、c為邊能否構(gòu)成三角形?若能構(gòu)成三角形,此三角形是什么形狀?并求出三角形的面積;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠DAB=∠BCD=90°,點(diǎn)E是BD上任意一點(diǎn),點(diǎn)O是AC的中點(diǎn),AF∥EC交EO的延長線于點(diǎn)F,連接AE,CF.

(1)判斷四邊形AECF是什么四邊形,并證明;

(2)若點(diǎn)E是BD的中點(diǎn),四邊形AECF又是什么四邊形?說明理由.

查看答案和解析>>

同步練習(xí)冊答案