【題目】如圖,∠AOB=165°,OD平分∠AOC

1)若∠AOD=50°,求∠BOC度數(shù);

2)若∠BOD=110°,那么OC是∠BOD的平分線嗎?說(shuō)明理由.

【答案】(1)65°;(2)OC是∠BOD的平分線,理由詳見解析.

【解析】

1)根據(jù)角平分線的定義可求得∠AOC的度數(shù),然后根據(jù)角的和差即可求得結(jié)果;

2)根據(jù)角平分線的定義和角的和差關(guān)系依次求出∠AOD和∠COD的度數(shù),即得∠BOC和∠COD的關(guān)系,進(jìn)而可作判斷.

解:(1)∵OD平分∠AOC,∠AOD=50°,

∴∠AOC=2AOD=100°

∴∠BOC=AOB-∠AOC=165°100°=65°

2OC是∠BOD的平分線,理由是:

∵∠AOB=165°,∠BOD=110°

∴∠AOD=AOB-∠BOD=165°110°=55°

OD平分∠AOC,∴∠COD=AOD=55°

∴∠BOC=BOD-∠COD=110°55°=55°

∴∠BOC=COD

OC是∠BOD的平分線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=kx+bx軸于點(diǎn)A,交y軸于點(diǎn)B,直線y=2x﹣4x軸于點(diǎn)D,與直線AB相交于點(diǎn)C(3,2).

(1)根據(jù)圖象,寫出關(guān)于x的不等式2x﹣4>x+b的解集;

(2)若點(diǎn)A的坐標(biāo)為(5,0),求直線AB的解析式;

(3)在(2)的條件下,求四邊形BODC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時(shí)出發(fā),設(shè)慢車行駛的時(shí)間為xh),兩車之間的距離為ykm),圖中的折線表示yx之間的函數(shù)關(guān)系,根據(jù)圖像回答以下問(wèn)題:

1)請(qǐng)?jiān)趫D中的( )內(nèi)填上正確的值,并寫出兩車的速度和.

2)求線段BC所表示的yx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

3)請(qǐng)直接寫出兩車之間的距離不超過(guò)15km的時(shí)間范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,M、N分別是ADBC的中點(diǎn),AND=90°,連接CMDN于點(diǎn)O

1)求證:ABN≌△CDM;

2)過(guò)點(diǎn)CCEMN于點(diǎn)E,交DN于點(diǎn)P,若PE=1,1=2,求AN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形AOBC的頂點(diǎn)C的坐標(biāo)是(2,4),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AO向終點(diǎn)O運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿線段BC向終點(diǎn)C運(yùn)動(dòng).點(diǎn)P、Q的運(yùn)動(dòng)速度均為1個(gè)單位,運(yùn)動(dòng)時(shí)間為t秒.過(guò)點(diǎn)PPEAOAB于點(diǎn)E

1)求直線AB的解析式;

2)設(shè)PEQ的面積為S,求St時(shí)間的函數(shù)關(guān)系,并指出自變量t的取值范圍;

3)在動(dòng)點(diǎn)PQ運(yùn)動(dòng)的過(guò)程中,點(diǎn)H是矩形AOBC內(nèi)(包括邊界)一點(diǎn),且以B、Q、EH為頂點(diǎn)的四邊形是菱形,直接寫出t值和與其對(duì)應(yīng)的點(diǎn)H的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為鼓勵(lì)市民節(jié)約用水,特制定如下的收費(fèi)標(biāo)準(zhǔn):若每月每戶用水不超過(guò)10立方米,則按3/立方米的水價(jià)收費(fèi),并加收0.2/立方米的污水處理費(fèi);若超過(guò)10立方米,則超過(guò)的部分4/立方米的水價(jià)收費(fèi),污水處理費(fèi)不變

1)若小華家5月份的用水量為8立方米,那么小華家5月份的水費(fèi)為_______元;

2)若小華家6月份的用水量為15立方米,那么小華家6月份的水費(fèi)為_______元;

3)若小華家某個(gè)月的用水量為aa10)立方米,求小華家這個(gè)月的水費(fèi)(用含a的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在紙面所在的平面內(nèi),一只電子螞蟻從數(shù)軸上表示原點(diǎn)的位置O點(diǎn)出發(fā),按向上、向右、向下、向右的方向依次不斷移動(dòng),每次移動(dòng)1個(gè)單位,其移動(dòng)路線如圖所示,第1次移動(dòng)到,第2次移動(dòng)到,第3次移動(dòng)到,……,第n次移動(dòng)到,則O的面積是(

A.504B.C.D.505

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=2,EAB的中點(diǎn),直線平行于直線EC,且直線與直線EC之間的距離為2,點(diǎn)F在矩形ABCD邊上,將矩形ABCD沿直線EF折疊,使點(diǎn)A恰好落在直線上, 則DF的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),與軸交于點(diǎn)C,連接BCAC,tanOCB -tanOCA=1OB=4OA.

1)求b的值;

2)點(diǎn)E在線段BC上,點(diǎn)FBC的延長(zhǎng)線上,且BE=CF,點(diǎn)D是直線BC下方拋物線上一點(diǎn),當(dāng)EDF是以EF為斜線的直角三角形,且4ED=3FD時(shí),求D點(diǎn)坐標(biāo);

3)在(2)的條件下,過(guò)點(diǎn)AAG軸,R為拋物線上CD段上一點(diǎn),連接AR,點(diǎn)KAR上,連接DK并延長(zhǎng)交AG于點(diǎn)G,連接DR,且2RDK+RKD=90°,GAR=RDK,若點(diǎn)Mw為坐標(biāo)平面內(nèi)一點(diǎn),直線MD與直線BC交于點(diǎn)N,當(dāng)MN=DN時(shí),求MRD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案