【題目】如圖所示,正方形ABCD的邊長(zhǎng)為3a,兩動(dòng)點(diǎn)E,F分別從頂點(diǎn)BC同時(shí)開(kāi)始以相同速度沿邊BC,CD運(yùn)動(dòng),與BCF相應(yīng)的EGH在運(yùn)動(dòng)過(guò)程中始終保持EGH≌△BCFB,E,C,G在一條直線上.

(1)BEa,求DH的長(zhǎng).

(2)當(dāng)E點(diǎn)在BC邊上的什么位置時(shí),DHE的面積取得最小值?并求該三角形面積的最小值.

【答案】1DHa;(2)△DHE的面積取得最小值,最小值是a2.

【解析】

仔細(xì)審題,根據(jù)已知點(diǎn)E與點(diǎn)F的移動(dòng),得到BE=CF,由已知BCF≌△EGH,利用全等三角形的性質(zhì)得到HGFC,∠G=∠BCF,連接FH,根據(jù)前面所得的條件,不難得到四邊形EBFH是平行四邊形,DFH是直角三角形,再利用勾股定理第一問(wèn)就可求解;對(duì)于(2),要得到DHE面積的最小值,設(shè)BE=x,根據(jù)y=SCDE+S梯形CDHE-SEGH=×3a×(3ax) (3ax)x×3a×x,結(jié)合二次函數(shù)求最值的方法即可完成解答.

(1)如圖,連接FH,∵△EGH≌△BCF,

HGFC,∠G=∠BCF,

HGFC,

∴四邊形FCGH是平行四邊形,

FH=CG

∴∠DFH=∠DCG90°.

由題意可知,CFBEa.RtDFH中,DF3aa2a,FHa,

DHa.

(2)設(shè)BExDHE的面積為y.

依題意,得ySCDES梯形CDHGSEGH×3a×(3ax) (3ax)x×3a×x,

yx2axa2,即ya2.

∴當(dāng)xa,即EBC的中點(diǎn)時(shí),y取得最小值,即DHE的面積取得最小值,最小值是a2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分7分) 已知:如圖,A是⊙O上一點(diǎn),半徑OC的延長(zhǎng)線與過(guò)點(diǎn)A的直線交于B點(diǎn),OC=BC,AC=OB

(1)求證:AB是⊙O的切線;

(2)若∠ACD=45°,OC=2,求弦CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(a,﹣)在直線y=﹣上,ABy軸,且點(diǎn)B的縱坐標(biāo)為1,雙曲線y經(jīng)過(guò)點(diǎn)B

(1)a的值及雙曲線y的解析式;

(2)經(jīng)過(guò)點(diǎn)B的直線與雙曲線y的另一個(gè)交點(diǎn)為點(diǎn)C,且△ABC的面積為

①求直線BC的解析式;

②過(guò)點(diǎn)BBDx軸交直線y=﹣于點(diǎn)D,點(diǎn)P是直線BC上的一個(gè)動(dòng)點(diǎn).若將△BDP以它的一邊為對(duì)稱(chēng)軸進(jìn)行翻折,翻折前后的兩個(gè)三角形所組成的四邊形為正方形,直接寫(xiě)出所有滿(mǎn)足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,以AB為直徑作半圓⊙OAC于點(diǎn)D,點(diǎn)EBC的中點(diǎn),連接DE.

(1)求證:DE是半圓⊙O的切線;

(2)若∠BAC=30°,DE=2,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某大學(xué)的樓門(mén)是一拋物線形水泥建筑物,大門(mén)的地面寬度為,兩側(cè)距離地面高處各有一個(gè)掛校名橫匾用的鐵環(huán),兩鐵環(huán)的水平距離為,則校門(mén)的高約為(精確到,水泥建筑物的厚度忽略不計(jì))( )

A. 9.2m B. 9.1m C. 9.0m D. 8.9m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是邊長(zhǎng)為3 cm的等邊三角形,動(dòng)點(diǎn)P,Q同時(shí)從A,B兩點(diǎn)出發(fā),分別沿AB,BC方向勻速移動(dòng),它們的速度都是1 cm/s,當(dāng)點(diǎn)P運(yùn)動(dòng)到B時(shí),P,Q兩點(diǎn)停止運(yùn)動(dòng),設(shè)P點(diǎn)運(yùn)動(dòng)時(shí)間為t(s)

(1)當(dāng)t為何值時(shí),PBQ是直角三角形?

(2)設(shè)四邊形APQC的面積為y(cm2),求y關(guān)于t的函數(shù)表達(dá)式,當(dāng)t取何值時(shí),四邊形APQC的面積最。坎⑶蟪鲎钚∶娣e.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,且BC=6,AB=3,AD是∠BAC的平分線,與BC相交于點(diǎn)E,點(diǎn)G是BC上一點(diǎn),E為線段BG的中點(diǎn),DG⊥BC于點(diǎn)G,交AC于點(diǎn)F,則FG的長(zhǎng)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程(x﹣3)(x﹣2=|m|

1)求證:對(duì)于任意實(shí)數(shù)m,方程總有兩個(gè)不相等的實(shí)數(shù)根;

2)若方程的一個(gè)根是1,求m的值及方程的另一個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年我國(guó)多個(gè)省市遭受?chē)?yán)重干旱,受旱災(zāi)的影響,4月份,我市某蔬菜價(jià)格呈上升趨勢(shì),其前四周每周的平均銷(xiāo)售價(jià)格變化如表:

周數(shù)x

1

2

3

4

價(jià)格y(元/千克)

2

2.2

2.4

2.6

1)請(qǐng)觀察題中的表格,用所學(xué)過(guò)的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí)直接寫(xiě)出4月份yx的函數(shù)關(guān)系式;

2)進(jìn)入5月,由于本地蔬菜的上市,此種蔬菜的平均銷(xiāo)售價(jià)格y(元/千克)從5月第1周的2.8/千克下降至第2周的2.4/千克,且y與周數(shù)x的變化情況滿(mǎn)足二次函數(shù)y=﹣x2+bx+c,請(qǐng)求出5月份yx的函數(shù)關(guān)系式;

3)若4月份此種蔬菜的進(jìn)價(jià)m(元/千克)與周數(shù)x所滿(mǎn)足的函數(shù)關(guān)系為mx+1.25月份此種蔬菜的進(jìn)價(jià)m(元/千克)與周數(shù)x所滿(mǎn)足的函數(shù)關(guān)系為m=﹣x+2.試問(wèn)4月份與5月份分別在哪一周銷(xiāo)售此種蔬菜一千克的利潤(rùn)最大?且最大利潤(rùn)分別是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案