【題目】如圖,在△ABC中,AB=AC,D、EBC邊上的點(diǎn),連接AD,AE,以△ADE的邊AE所在直線為對(duì)稱軸作△ADE的軸對(duì)稱圖形△AD′E,連接D′C,若BD=CD′;

(1)求證:△ABD≌△ACD′;

(2)若∠BAC=120°,求∠DAE的度數(shù)

【答案】(1)見(jiàn)解析;(2)

【解析】

(1)根據(jù)對(duì)稱得出AD=AD,根據(jù)SSSABD≌△ACD即可;

(2)根據(jù)全等得出∠BAD=CAD,求出∠BAC=DAD,根據(jù)對(duì)稱得出∠DAE=DAD,代入求出即可.

證明:∵以ADE的邊AE所在直線為對(duì)稱軸作ADE的軸對(duì)稱圖形ADE,

,

ABDACD中,

,

ABDACD′(SSS).

解:∵,

,

,

∵以ADE的邊AE所在直線為對(duì)稱軸作ADE的軸對(duì)稱圖形ADE,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0),B(5,0)兩點(diǎn),直線y=﹣ x+3與y軸交于點(diǎn)C,與x軸交于點(diǎn)D.點(diǎn)P是x軸上方的拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PF⊥x軸于點(diǎn)F,交直線CD于點(diǎn)E.設(shè)點(diǎn)P的橫坐標(biāo)為m.

(1)求拋物線的解析式;
(2)若PE=5EF,求m的值;
(3)若點(diǎn)E′是點(diǎn)E關(guān)于直線PC的對(duì)稱點(diǎn),是否存在點(diǎn)P,使點(diǎn)E′落在y軸上?若存在,請(qǐng)直接寫(xiě)出相應(yīng)的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊ABC中,DBC邊的中點(diǎn),以AD為邊作等邊ADE.

(1)求∠CAE的度數(shù);

(2)AB邊的中點(diǎn)F,連接CF、CE,試說(shuō)明四邊形AFCE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ECD的中點(diǎn),連接AE、BE,BEAE,延長(zhǎng)AEBC的延長(zhǎng)線于點(diǎn)F.

求證:(1)FC=AD;

(2)AB=BC+AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點(diǎn)E.若BF=6,AB=5,則AE的長(zhǎng)為(

A.4
B.6
C.8
D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)寫(xiě)出方程 x y =3的兩個(gè)解__________,把方程 x y =3化成一次函數(shù)的形式為__________;

(2)以方程 x y =3的解為坐標(biāo)的所有點(diǎn)組成的圖象與一次函數(shù) y =3- x 的圖象相同嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】目前,步行已成為人們最喜愛(ài)的健身方法之一,通過(guò)手機(jī)可以計(jì)算行走的步數(shù)與相應(yīng)的能量消耗.對(duì)比手機(jī)數(shù)據(jù)發(fā)現(xiàn)小明步行12 000步與小紅步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步數(shù)比小紅多10步,求小紅每消耗1千卡能量需要行走多少步?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面給出的五個(gè)結(jié)論中:

①最大的負(fù)整數(shù)是-1;②數(shù)軸上表示數(shù)3-3的點(diǎn)到原點(diǎn)的距離相等;

③當(dāng)a≤0時(shí),|a|=-a成立;④若a2=9,則a一定等于3;

一定是正數(shù).說(shuō)法正確的有_________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC和DCB中,A=D=90°,AC=BD,AC與BD相交于點(diǎn)O.

(1)求證:ABO≌△DCO;

(2)OBC是何種三角形?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案