【題目】如圖,在△ABC中,ABAC2,∠BAC30°,將△ABC沿AC翻折得到△ACD,延長ADBC的延長線于點(diǎn)E,則△ABE的面積為( 。

A.B.C.3D.

【答案】B

【解析】

由折疊的性質(zhì)可知∠CAD30°=∠CAB,ADAB2.由等腰三角形的性質(zhì)得出∠BCA=∠ACD=∠ADC75°.求出∠ECD30°.由三角形的外角性質(zhì)得出∠E75°30°45°,過點(diǎn)CCHAEH,過BBMAEM,由直角三角形的性質(zhì)得出CH AC1AHCH.得出HDADAH2.求出EHCH1.得出DEEHHD1,AEAD+DE1+,由直角三角形的性質(zhì)得出AMAB1,BMAM.由三角形面積公式即可得出答案.

解:由折疊的性質(zhì)可知:∠CAD30°=∠CAB,ADAB2

∴∠BCA=∠ACD=∠ADC75°

∴∠ECD180°2×75°30°

∴∠E75°30°45°

過點(diǎn)CCHAEH,過BBMAEM,如圖所示:

RtACH中,CHAC1,AHCH

HDADAH2

RtCHE中,

∵∠E45°,

∴△CEH是等腰直角三角形,

EHCH1

DEEHHD1﹣(2)=1,

AEAD+DE1+,

BMAE,∠BAE=∠BAC+CAD60°

∴∠ABM30°,

AMAB1,BMAM

∴△ABE的面積=AE×BM×1+×;

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2﹣4y=﹣ax2+4都經(jīng)過x軸上的A、B兩點(diǎn),兩條拋物線的頂點(diǎn)分別為C、D.當(dāng)四邊形ACBD的面積為40時(shí),a的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某店代理某品牌商品的銷售.已知該品牌商品進(jìn)價(jià)每件40元,日銷售y(件)與銷售價(jià)x(元/件)之間的關(guān)系如圖所示(實(shí)線),付員工的工資每人每天100元,每天還應(yīng)支付其它費(fèi)用150元.

1)求日銷售y(件)與銷售價(jià)x(元/件)之間的函數(shù)關(guān)系式;

2)該店員工人共3人,若某天收支恰好平衡(收入=支出),求當(dāng)天的銷售價(jià)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知Rt△ABC中,∠C90°AC6,BC8,點(diǎn)P以每秒1個(gè)單位的速度從AC運(yùn)動(dòng),同時(shí)點(diǎn)Q以每秒2個(gè)單位的速度從BA方向運(yùn)動(dòng),Q到達(dá)A點(diǎn)后,P點(diǎn)也停止運(yùn)動(dòng),設(shè)點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間為t秒.

1)求P點(diǎn)停止運(yùn)動(dòng)時(shí),BP的長;

2PQ兩點(diǎn)在運(yùn)動(dòng)過程中,點(diǎn)EQ點(diǎn)關(guān)于直線AC的對稱點(diǎn),是否存在時(shí)間t,使四邊形PQCE為菱形?若存在,求出此時(shí)t的值;若不存在,請說明理由.

3P,Q兩點(diǎn)在運(yùn)動(dòng)過程中,求使△APQ△ABC相似的時(shí)間t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,點(diǎn)為腰中點(diǎn),點(diǎn)在底邊上,且,則的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我校初二體育考試選擇項(xiàng)目中,選擇籃球項(xiàng)目和排球項(xiàng)目的學(xué)生比較多.為了解學(xué)生掌握籃球技巧和排球技巧的水平?jīng)r,進(jìn)行了抽樣調(diào)查,過程如下,請補(bǔ)充完整下題表格.

收集數(shù)據(jù):從選擇籃球和排球的學(xué)生各隨機(jī)抽取10人,進(jìn)行了測試,測試成績?nèi)缦拢?/span>

排球9 9.5 9 9 8 10 9.5 8 4 9.5

籃球9.5 9.5 8.5 8.5 10 9.5 6 8 6 9

整理、描述數(shù)據(jù):按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):

項(xiàng)目

人數(shù)

成績x

4.0x5.5

5.5x7.0

7.0x8.5

8.5x10

10

排球

1

0

2

6

1

籃球

0

2

1

6

1

(說明:成績8.5分及以上為優(yōu)秀,6分及以上為合格,6分以下為不合格.)

分折數(shù)據(jù)兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如表所示:

項(xiàng)目

平均數(shù)

中位數(shù)

眾數(shù)

排球

8.55

a

99.5

籃球

8.45

8.75

b

應(yīng)用數(shù)據(jù)

1)填空:a   ,b   

p>2)初三年級的小偉和小明看到上面數(shù)據(jù)后,小偉說:排球項(xiàng)目整體水平較高:小明說:籃球項(xiàng)目整體水平較高.你同意   的看法,理由為:   ;   .(從兩個(gè)不同的角度說明推理的合理性)

3)如果初二年級有180人選排球項(xiàng)目,請信計(jì)該年級排球項(xiàng)目獲得優(yōu)秀的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明想測量一棵樹的高度,他發(fā)現(xiàn)樹的影子恰好落在地面和一斜坡上;如圖,此時(shí)測得地面上的影長為8米,坡面上的影長為4米.已知斜坡的坡角為300,同一時(shí) 刻,一根長為l米、垂直于地面放置的標(biāo)桿在地面上的影長為2米,則樹的高度為【 】

A.米 B.12米 C.米 D.10米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把拋物線y=x2平移得到拋物線m,拋物線m經(jīng)過點(diǎn)A(﹣6,0)和原點(diǎn)O(0,0),它的頂點(diǎn)為P,它的對稱軸與拋物線y=x2交于點(diǎn)Q,則圖中陰影部分的面積為  ▲  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,雙曲線yABCD的頂點(diǎn)BD.點(diǎn)D的坐標(biāo)為(2,1),點(diǎn)Ay軸上,且ADx軸,SABCD6

1)填空:點(diǎn)A的坐標(biāo)為   

2)求雙曲線和AB所在直線的解析式.

查看答案和解析>>

同步練習(xí)冊答案