【題目】如圖,已知∠12BAC20°,ACF80°.

(1)求∠2的度數(shù);

(2)FCAD平行嗎?為什么?

(3)根據(jù)以上結論,你能確定∠ADB與∠FCB的大小關系嗎?請說明理由.

【答案】(1)280°;(2)答案見解析;(3) 答案見解析.

【解析】試題分析:(1)利用平角定義,根據(jù)題意確定出∠2的度數(shù)即可;

2FCAD平行,理由為:利用內錯角相等兩直線平行即可得證;

3ADB=FCB,理由為:由FCAD平行,利用兩直線平行同位角相等即可得證.

試題解析:(1∵∠1=2,BAC=20°,1+2+BAC=180°

∴∠2=80°;

2∵∠2=ACF=80°

FCAD;

3ADB=FCB,理由為:

證明:∵FCAD,

∴∠ADB=FCB

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀新知:移項且合并同類項之后,只含有偶次項的四次方程稱作雙二次方程.其一般形式為ax4+bx2+c=0(a≠0),一般通過換元法解之,具體解法是設 x2=y,則原四次方程化為一元二次方程:ay2+by+c=0,解出y之后代入x2=y,從而求出x的值.例如解:4x4﹣8y2+3=0
解:設x2=y,則原方程可化為:4y2﹣8y+3=0
∵a=4,b=﹣8,c=3
∴b2﹣4ac=﹣(﹣8)2﹣4×4×3=16>0
∴y= =
∴y1= ,
∴y2=
∴當y1= 時,x2=
∴x1= ,x2=﹣ ;當y1= 時,x2=
∴x3= ,x4=﹣
小試牛刀:請你解雙二次方程:x4﹣2x2﹣8=0
歸納提高:思考以上解題方法,試判斷雙二次方程的根的情況,下列說法正確的是(選出所有的正確答案)
①當b2﹣4ac≥0時,原方程一定有實數(shù)根;②當b2﹣4ac<0時,原方程一定沒有實數(shù)根;③當b2﹣4ac≥0,并且換元之后的一元二次方程有兩個正實數(shù)根時,原方程有4個實數(shù)根,換元之后的一元二次方程有一個正實數(shù)根一個負實數(shù)根時,原方程有2個實數(shù)根;④原方程無實數(shù)根時,一定有b2﹣4ac<0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點P(﹣3,1),則點P關于y軸的對稱點的坐標是 , 點P關于原點O的對稱點的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】本題8分A、B兩地分別有水泥20噸和30噸,C、D兩地分別需要水泥15噸和35噸;已知從A、B到C、D的運價如下表:

到C地

到D地

A地

每噸15元

每噸12元

B地

每噸10元

每噸9元

1若從A地運到C地的水泥為x噸,則用含x的式子表示從A地運到D地的水泥 噸,從A地將水泥運到D地的運輸費用為 .

2用含x的代數(shù)式表示從A、B兩地運到C、D兩地的總運輸費,并化簡該式子.

3當總費用為545元時水泥該如何運輸調配?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】動點A從原點出發(fā)向數(shù)軸負方向運動,同時,動點B也從原點出發(fā)向數(shù)軸正方向運動,運動到3秒鐘時,兩點相距15個單位長度.已知動點A、B的運動速度比之是3:2(速度單位:1個單位長度/秒).

(1)求兩個動點運動的速度;

(2)A、B兩點運動到3秒時停止運動,請在數(shù)軸上標出此時A、B兩點的位置;

(3)若A、B兩點分別從(2)中標出的位置再次同時開始在數(shù)軸上運動,運動的速度不變,運動的方向不限,問:經(jīng)過幾秒鐘,A、B兩點之間相距4個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a、b互為相反數(shù),c、d互為倒數(shù),x是最小的正整數(shù).試求x2﹣(a+b+cd)x+(a+b)2008+(﹣cd)2008的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個點從數(shù)軸上的原點開始,先向右移動2個單位長度,再向左移動3個單位長度,經(jīng)過兩次移動后到達的終點表示的是什么數(shù)?(
A.+5
B.+1
C.﹣1
D.﹣5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列語句中表述準確的是( )

A. 延長射線OC

B. 射線BA與射線AB是同一條射線

C. 作直線ABBC

D. 已知線段AB,作線段CDAB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算(a23 , 正確結果是(
A.a5
B.a6
C.a8
D.a9

查看答案和解析>>

同步練習冊答案