精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在正方形ABCD中,AB=12,點EBC的中點,以CD為直徑作半圓CFD,點F為半圓的中點,連接AF,EF,圖中陰影部分的面積是(  )

A. 18+36π B. 24+18π C. 18+18π D. 12+18π

【答案】C

【解析】FHBCH,連接FH,如圖,根據正方形的性質和切線的性質得BE=CE=CH=FH=6,則利用勾股定理可計算出AE=6,通過RtABE≌△EHF得∠AEF=90°,然后利用圖中陰影部分的面積=S正方形ABCD+S半圓﹣SABE﹣SAEF進行計算.

FHBCH,連接FH,如圖,

∵點EBC的中點,點F為半圓的中點,

BE=CE=CH=FH=6,

AE==6

易得RtABE≌△EHF,

∴∠AEB=EFH,

而∠EFH+FEH=90°,

∴∠AEB+FEH=90°,

∴∠AEF=90°,

∴圖中陰影部分的面積=S正方形ABCD+S半圓﹣SABE﹣SAEF

=12×12+π62×12×6﹣6×6

=18+18π.

故選:C.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某校七年級甲、乙兩班分別選5名同學參加“學雷鋒見行動”演講比賽,其預賽成績如圖:

1)根據上圖求出下表中的a,b,c的值(單位:分);

平均數

中位數

眾數

方差

甲班

8.5

a

8.5

0.7

乙班

b

8

c

1.6

2)學校決定在甲、乙兩班中選取預賽成績較好的5人參加該活動的縣級演講比賽,求這5人預賽成績的平均分數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABC中,∠ABC=90°.

(1)如圖1,分別過A、C兩點作經過點B的直線的垂線,垂足分別為M、N,求證:ABM∽△BCN;

(2)如圖2,P是邊BC上一點,∠BAP=C,tanPAC=,求tanC的值;

(3)如圖3,D是邊CA延長線上一點,AE=AB,DEB=90°,sinBAC=,,直接寫出tanCEB的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠A=36°,AB=AC,CD是△ACB的角平分線.若在邊AC上截取CE=CB,連接DE,則圖中等腰三角形共有( 。

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1E、F分別是BCCD上的點,且AEF是等邊三角形,則BE的長為(

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將矩形ABCD(紙片)折疊,使點BAD邊上的點K重合,EG為折痕;點CAD邊上的點K重合,FH為折痕.已知∠1=67.5°,2=75°,EF=+1,求BC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,E,F,G,H分別是AB,BDCD,AC的中點,要使四邊形EFGH是菱形,則四邊形ABCD只需要滿足一個條件是( )

A. ADBC

B. ACBD

C. ABCD

D. ADCD

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠C90°ACBC10cm,點P從點B出發(fā),沿BA方向以每秒cm的速度向終點A運動;同時,動點Q從點C出發(fā)沿CB方向以每秒1 cm的速度向終點B運動,將BPQ沿BC翻折,點P的對應點為點P′,設Q點運動的時間為t秒,當四邊形QPBP′為菱形時,t的值為____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,一次函數y=(1-3kx+2k-1,試回答:

1k為何值時,yx的增大而減。

2k為何值時,圖像與y軸交點在x軸上方?

3) 若一次函數y=(1-3kx+2k-1經過點(3,4).請求出一次函數的表達式.

查看答案和解析>>

同步練習冊答案