【題目】如圖,將矩形ABCD(紙片)折疊,使點(diǎn)BAD邊上的點(diǎn)K重合,EG為折痕;點(diǎn)CAD邊上的點(diǎn)K重合,FH為折痕.已知∠1=67.5°,2=75°,EF=+1,求BC的長.

【答案】BC的長為3++

【解析】由題意知∠3=180°﹣21=45°、4=180°﹣22=30°、BE=KE、KF=FC,作KMBC,設(shè)KM=x,知EM=x、MF=x,根據(jù)EF的長求得x=1,再進(jìn)一步求解可得.

由題意,得:∠3=180°﹣21=45°,4=180°﹣22=30°,BE=KE、KF=FC,

如圖,過點(diǎn)KKMBC于點(diǎn)M,

設(shè)KM=x,則EM=x、MF=x,

x+x=+1,

解得:x=1,

EK=、KF=2,

BC=BE+EF+FC=EK+EF+KF=3++

BC的長為3++

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA與⊙O相切于點(diǎn)A,過點(diǎn)AABOP,垂足為C,交⊙O于點(diǎn)B.連接PB,AO,并延長AO交⊙O于點(diǎn)D,與PB的延長線交于點(diǎn)E.

(1)求證:PB是⊙O的切線;

(2)若OC=3,AC=4,求sinE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD中,ADBC,要判別四邊形ABCD是平行四邊形,還需滿足條件(

A. A+C=180°B. B+D=180°

C. A+B=180°D. A+D=180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“中華人民共和國道路交通管理?xiàng)l例”規(guī)定:小汽車在城街路上行駛速度不得超過km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路對面車速檢測儀正前方m處,過了2s后,測得小汽車與車速檢測儀間距離為m,這輛小汽車超速了嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=12,點(diǎn)EBC的中點(diǎn),以CD為直徑作半圓CFD,點(diǎn)F為半圓的中點(diǎn),連接AF,EF,圖中陰影部分的面積是( 。

A. 18+36π B. 24+18π C. 18+18π D. 12+18π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在四邊形BCDE中,BCCD,DECD,ABAE,垂足分別為C,D,A,BC≠AC,點(diǎn)M,N,F(xiàn)分別為AB,AE,BE的中點(diǎn),連接MN,MF,NF.

(1)如圖②,當(dāng)BC=4,DE=5,tanFMN=1時(shí),求的值;

(2)若tanFMN=,BC=4,則可求出圖中哪些線段的長?寫出解答過程;

(3)連接CM,DN,CF,DF.試證明FMCDNF全等;

(4)在(3)的條件下,圖中還有哪些其它的全等三角形?請直接寫出.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,以AB為直徑的圓交AC于點(diǎn)D,交BC于點(diǎn)E,延長AE至點(diǎn)F,使EF=AE,連接FB,F(xiàn)C.

(1)求證:四邊形ABFC是菱形;

(2)若AD=7,BE=2,求半圓和菱形ABFC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,AD,CD分別是ABC兩個(gè)外角的平分線.

(1)求證:∠ACD=∠ADC;

(2)若∠B60°,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,AB=1,A=60°,ABC=90°,如圖所示將RtABC沿直線l無滑動(dòng)地滾動(dòng)至RtDEF,則點(diǎn)B所經(jīng)過的路徑與直線l所圍成的封閉圖形的面積為_____.(結(jié)果不取近似值)

查看答案和解析>>

同步練習(xí)冊答案