【題目】如圖,在一居民樓AB和塔CD之間有一棵樹EF,從樓頂A處經(jīng)過樹頂E點恰好看到塔的底部D點,且俯角α38°.從距離樓底B2米的P處經(jīng)過樹頂E點恰好看到塔的頂部C點,且仰角β28°.已知樹高EF8米,求塔CD的高度.(參考數(shù)據(jù):sin38°≈0.6,cos38°≈0.8tan38°≈0.8,sin28°≈0.5cos28°≈0.9,tan28°≈0.5

【答案】CD13(米).

【解析】

根據(jù)題意求出∠EDF38°,通過解直角EFD求得FD,在RtPEH中,利用特殊角的三角函數(shù)值分別求出BF,即可求得PG,在RtPCG中,繼而可求出CG的長度.

解:由題意知,∠EDFα38°,

FD10(米).EH826(米)

RtPEH中,∵

BF12(米)

PGBDBF+FD12+1022(米).

在直角PCG中,∵

CGPGtanβ≈22×0.511(米).

CD11+213(米).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某批發(fā)市場有中招考試文具套裝,其中A品牌的批發(fā)價是每套20元,B品牌的批發(fā)價是每套25元,小王需購買A、B兩種品牌的文具套裝共1000套.

(1)若小王按需購買A、B兩種品牌文具套裝共用22000元,則各購買多少套?

(2)憑會員卡在此批發(fā)市場購買商品可以獲得8折優(yōu)惠,會員卡費用為500元.若小王購買會員卡并用此卡按需購買1000套文具套裝,共用了y元,設(shè)A品牌文具套裝買了x包,請求出y與x之間的函數(shù)關(guān)系式.

(3)若小王購買會員卡并用此卡按需購買1000套文具套裝,共用了20000元,他計劃在網(wǎng)店包郵銷售這兩種文具套裝,每套文具套裝小王需支付郵費8元,若A品牌每套銷售價格比B品牌少5元,請你幫他計算,A品牌的文具套裝每套定價不低于多少元時才不虧本(運算結(jié)果取整數(shù))?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的口袋中裝有4個完全相同的小球,分別標有數(shù)字1,2,3,4,另外有一個可以自由旋轉(zhuǎn)的圓盤,被分成面積相等的3個扇形區(qū)域,分別標有數(shù)字1,2,3(如圖所示).

1)從口袋中摸出一個小球,所摸球上的數(shù)字大于2的概率為 ;

2)小龍和小東想通過游戲來決定誰代表學校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個小球,另一人轉(zhuǎn)動圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于5,那么小龍去;否則小東去.你認為游戲公平嗎?請用樹狀圖或列表法說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點F,交BC的延長線于點E.

(1)求證:BE=CD;

(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,任意四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA上的點,對于四邊形EFGH的形狀,某班學生在一次數(shù)學活動課中,通過動手實踐,探索出如下結(jié)論,其中錯誤的是(

A.當E,F(xiàn),G,H是各邊中點,且AC=BD時,四邊形EFGH為菱形

B.當E,F(xiàn),G,H是各邊中點,且ACBD時,四邊形EFGH為矩形

C.當E,F(xiàn),G,H不是各邊中點時,四邊形EFGH可以為平行四邊形

D.當E,F(xiàn),G,H不是各邊中點時,四邊形EFGH不可能為菱形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,ABAC5,BC8,點M是△ABC的中線AD上一點,以M為圓心作⊙M.設(shè)半徑為r

1)如圖1,當點M與點A重合時,分別過點B,C作⊙M的切線,切點為EF.求證:BECF;

2)如圖2,若點M與點D重合,且半圓M恰好落在△ABC的內(nèi)部,求r的取值范圍;

3)當M為△ABC的內(nèi)心時,求AM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段AC,AGAH什么關(guān)系?請說明理由;

(3)設(shè)AEm

①△AGH的面積S有變化嗎?如果變化.請求出Sm的函數(shù)關(guān)系式;如果不變化,請求出定值.

②請直接寫出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,將∠D60°的菱形ABCD沿對角線AC剪開,將△ADC沿射線DC方向平移,得到△BCE,點M為邊BC上一點(M不與點B、點C重合),將射線AM繞點A逆時針旋轉(zhuǎn)60°,與EB的延長線交于點N,連接MN

(1)①求證:∠ANB=∠AMC;

探究△AMN的形狀;

(2)如圖,若菱形ABCD變?yōu)檎叫?/span>ABCD,將射線AM繞點A逆時針旋轉(zhuǎn)45°,原題其他條件不變,(1)中的、兩個結(jié)論是否仍然成立?若成立,請直接寫出結(jié)論;若不成立,請寫出變化后的結(jié)論并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,AC是∠BAD的角平分線.

1)求證:△ABC≌△ADC

2)若∠BCD60°,AC=BC,求∠ADB的度數(shù).

查看答案和解析>>

同步練習冊答案