【題目】如圖,拋物線y=x2+bx+c過(guò)點(diǎn)A(﹣4,﹣3),與y軸交于點(diǎn)B,對(duì)稱軸是x=﹣3,請(qǐng)解答下列問(wèn)題:

(1)求拋物線的解析式.

(2)若和x軸平行的直線與拋物線交于C,D兩點(diǎn),點(diǎn)C在對(duì)稱軸左側(cè),且CD=8,求△BCD的面積.注:拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸是x=﹣.

【答案】 ;

【解析】

(1)先把點(diǎn)代入,,再根據(jù)對(duì)稱軸方程求出,則可計(jì)算出于是得到拋物線的解析式是;
(2)根據(jù)拋物線的對(duì)稱性得到點(diǎn)C的橫坐標(biāo)為-7,則可利用(1)中的解析式計(jì)算出對(duì)應(yīng)的函數(shù)值,即C點(diǎn)坐標(biāo)為(-7,12),然后根據(jù)三角形面積公式求解.

把點(diǎn)代入得:

,

,

∵對(duì)稱軸是,

,

,

,

∴拋物線的解析式是

軸,

∴點(diǎn)與點(diǎn)關(guān)于對(duì)稱,

∵點(diǎn)在對(duì)稱軸左側(cè),且,

∴點(diǎn)的橫坐標(biāo)為,

∴點(diǎn)的縱坐標(biāo)為

∵點(diǎn)的坐標(biāo)為,

邊上的高為,

的面積

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,在矩形ABCD中,AB=8,AD=3,點(diǎn)ECD的中點(diǎn),連接AE,將ADE沿直線AE折疊,使點(diǎn)D落在點(diǎn)F處,則線段CF的長(zhǎng)度是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地一路段修建,甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天,若由甲隊(duì)先做5天,再由甲、乙兩隊(duì)合作9天,共完成這項(xiàng)工程的三分之一.

(1)求甲、乙兩隊(duì)合作完成這項(xiàng)工程需要多少天?

(2)若甲隊(duì)的工作效率提高20%,乙隊(duì)工作效率提高50%,甲隊(duì)施工1天需付工程款4萬(wàn)元,乙隊(duì)施工一天需付工程款2.5萬(wàn)元,現(xiàn)由甲乙兩隊(duì)合作若干天后,再由乙隊(duì)完成剩余部分,在完成此項(xiàng)工程的工程款不超過(guò)190萬(wàn)元的條件下要求盡早完成此項(xiàng)工程,則甲、乙兩隊(duì)至多要合作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)ab、c為常數(shù)且a≠0)中的xy的部分對(duì)應(yīng)值如下表:

x

3

2

1

0

1

2

3

4

5

y

12

5

0

3

4

3

0

5

12

給出了結(jié)論:

1)二次函數(shù)有最小值,最小值為﹣3

2)當(dāng)時(shí),y0;

3)二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),且它們分別在y軸兩側(cè).

則其中正確結(jié)論的個(gè)數(shù)是

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊△BCP在正方形ABCD內(nèi),則∠APD_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是等邊三角形,AB=3,EAC上且AE=AC,D是直線BC上一動(dòng)點(diǎn),線段ED繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)900,得到線段EF,當(dāng)點(diǎn)D運(yùn)動(dòng)時(shí),則線段AF的最小值是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角中,,以點(diǎn)C為圓心,BC為半徑的圓交AB于點(diǎn)D,交AC于點(diǎn)E.

,求弧DE的度數(shù);

,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題探究:

如圖1ACBDCE均為等邊三角形,點(diǎn)AD、E在同一直線上,連接BE

1)證明:AD=BE;

2)求∠AEB的度數(shù).

問(wèn)題變式:

3)如圖2ACBDCE均為等腰直角三角形,∠ACB=DCE=90°,點(diǎn)A、DE在同一直線上,CMDCEDE邊上的高,連接BE.()請(qǐng)求出∠AEB的度數(shù);()判斷線段CM、AE、BE之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一條東西走向河的一側(cè)有一村莊C,河邊原有兩個(gè)取水點(diǎn)AB,其中ABAC,由于某種原因,由CA的路現(xiàn)在已經(jīng)不通,某村為方便村民取水決定在河邊新建一個(gè)取水點(diǎn)HA、HB在一條直線上),并新修一條路CH,測(cè)得CB3千米,CH2.4千米,HB1.8千米.

1)問(wèn)CH是否為從村莊C到河邊的最近路?(即問(wèn):CHAB是否垂直?)請(qǐng)通過(guò)計(jì)算加以說(shuō)明;

2)求原來(lái)的路線AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案