【題目】如圖,等邊△BCP在正方形ABCD內(nèi),則∠APD_____度.

【答案】150

【解析】

由正方形的性質(zhì)和等邊三角形的性質(zhì)得出AB=BP=CP=CD,ABP=DCP=30°,由三角形內(nèi)角和定理求出∠BAP=BPA=CDP=CPD=75°,再求出∠PAD=PDA=15°,然后由三角形內(nèi)角和定理求出∠APD即可.

∵四邊形ABCD是正方形,
AB=BC=CD=DA,BAD=ABC=BCD=CDA=90°,
∵△BCP是等邊三角形,
BP=CP=BC,PBC=BCP=BPC=60°,
AB=BP=CP=CD,ABP=DCP=90°-60°=30°,
∴∠BAP=BPA=CDP=CPD=(180°-30°)=75°,
∴∠PAD=PDA=90°-75°=15°,
∴∠APD=180°-15°-15°=150°;
故答案為:150.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形 ABCD 中,對(duì)角線 AC,BD 相交于點(diǎn) O,AO=CO,BO=DO.添加下列條件,不能判定四邊形 ABCD 是菱形的是( )

A.AB=ADB.∠ABO=∠CBOC.AC⊥BDD.AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某中學(xué)校園內(nèi)新建的一座騰飛雕塑,數(shù)學(xué)老師給八年級(jí)的兩個(gè)數(shù)學(xué)社團(tuán)布置了驗(yàn)證雕塑底座正面的邊AB和邊CD是否分別垂直于底邊BC的作業(yè).老師給巧手社團(tuán)配備的工具只有卷尺,給敏思社團(tuán)只配備了一把20cm長(zhǎng)的刻度尺他們能完成任務(wù)嗎?如果能,請(qǐng)給出測(cè)量方案;如果不能需要增加哪些測(cè)量工具?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖某人為了測(cè)量小山頂上的塔ED的高,他在山下的點(diǎn)A處測(cè)得塔尖點(diǎn)D的仰角為45°,再沿AC方向前進(jìn)60 m到達(dá)山腳點(diǎn)B,測(cè)得塔尖點(diǎn)D的仰角為60°,塔底點(diǎn)E的仰角為30°,求塔ED的高度.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】蘇果超市用5000元購進(jìn)一批新品種的蘋果進(jìn)行試銷,由于試銷狀況良好,超市又調(diào)撥11000元資金購進(jìn)該種蘋果,但這次的進(jìn)價(jià)比試銷時(shí)每千克多了0.5元,購進(jìn)蘋果的數(shù)量是試銷時(shí)的2倍。

(1)試銷時(shí)該品種蘋果的進(jìn)價(jià)是每千克多少元?

(2)如果超市將該品種的蘋果按每千克7元定價(jià)出售,當(dāng)大部分蘋果售出后,余下的400千克按定價(jià)的七折售完,那么超市在這兩次蘋果銷售中共盈利多少元?(7分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c過點(diǎn)A(﹣4,﹣3),與y軸交于點(diǎn)B,對(duì)稱軸是x=﹣3,請(qǐng)解答下列問題:

(1)求拋物線的解析式.

(2)若和x軸平行的直線與拋物線交于C,D兩點(diǎn),點(diǎn)C在對(duì)稱軸左側(cè),且CD=8,求△BCD的面積.注:拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸是x=﹣.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

;

;

用配方法

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我市某一城市美化工程招標(biāo)時(shí),有甲、乙兩個(gè)工程隊(duì)投標(biāo),經(jīng)測(cè)算:甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天,若由甲隊(duì)先做20天,剩下的工程由甲、乙合作24天可完成.

1)乙隊(duì)單獨(dú)完成這項(xiàng)工程需要多少天?

2)甲隊(duì)施工一天,需付工程款3.5萬元,乙隊(duì)施工一天需付工程款2萬元.若該工程計(jì)劃在70天內(nèi)完成,在不超過計(jì)劃天數(shù)的前提下,是由甲隊(duì)或乙隊(duì)單獨(dú)完成工程省錢?還是由甲乙兩隊(duì)全程合作完成該工程省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)分別為(﹣1,0),(30),對(duì)于下列結(jié)論:①2a+b=0;②abc0;③a+b+c0;④當(dāng)x1時(shí),yx的增大而減。黄渲姓_的有(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案