【題目】在Rt△ABC中,AB=AC,OB=OC,∠A=90°,∠MON=α,分別交直線AB、AC于點M、N.
(1)如圖1,當α=90°時,求證:AM=CN;
(2)如圖2,當α=45°時,問線段BM、MN、AN之間有何數(shù)量關系,并證明;
(3)如圖3,當α=45°時,旋轉∠MON,問線段之間BM、MN、AN有何數(shù)量關系?并證明.
【答案】(1)證明見解析;(2)BM=AN+MN,理由見解析;(3)MN=AN+BM.理由見解析.
【解析】
(1)根據(jù)題意AB=AC,∠BAC=90°,得出是一個等腰直角三角形,再根據(jù)三線合一得出OA=OB=OC,從而∠ABO=∠ACO=∠BAO=∠CAO=45°,且AO⊥BC,從而得出∠MON=∠AOC=90°,再又因為等角的余角相等,所以∠AOM=∠CON,所以通過證明△AOM≌△CON得出AM=CN
(2)根據(jù)題意,在BA上截取BG=AN,連接GO,AO,先證明△BGO≌△AON,再證明△GMO≌△NMO得出GM=MN,從而證明出BM=AN+MN
(3)根據(jù)題意,過點O作OG⊥ON,連接AO,先證明△NAO≌△GBO,得到AN=
GB,GO=ON,再證明△MON≌△MOG得到MN=MG,從而進一步證明出MN=AN+BM
證明:(1)如圖1,連接OA,
∵AB=AC,∠BAC=90°,OB=OC,
∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,
∴∠MON=∠AOC=90°,
∴∠AOM=∠CON,且AO=CO,∠BAO=∠ACO=45°,
∴△AOM≌△CON(ASA)
∴AM=CN;
(2)BM=AN+MN,
理由如下:如圖2,在BA上截取BG=AN,連接GO,AO,
∵AB=AC,∠BAC=90°,OB=OC,
∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,
∵BG=AN,∠ABO=∠NAO=45°,AO=BO,
∴△BGO≌△AON(SAS)
∴OG=ON,∠BOG=∠AON,
∵∠MON=45°=∠AOM+∠AON,
∴∠AOM+∠BOG=45°,且∠AOB=90°,
∴∠MOG=∠MON=45°,且MO=MO,GO=NO,
∴△GMO≌△NMO(SAS)
∴GM=MN,
∴BM=BG+GM=AN+MN;
(3)MN=AN+BM,
理由如下:如圖3,過點O作OG⊥ON,連接AO,
∵AB=AC,∠BAC=90°,OB=OC,
∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,
∴∠GBO=∠NAO=135°,
∵MO⊥GO,
∴∠NOG=90°=∠AOB,
∴∠BOG=∠AON,且AO=BO,∠NAO=∠GBO,
∴△NAO≌△GBO(ASA)
∴AN=GB,GO=ON,
∵MO=MO,∠MON=∠GOM=45°,GO=NO,
∴△MON≌△MOG(SAS)
∴MN=MG,
∵MG=MB+BG,
∴MN=AN+BM.
科目:初中數(shù)學 來源: 題型:
【題目】某花圃用花盆培育某種花苗,經(jīng)過實驗發(fā)現(xiàn)每盆的盈利與每盆的株數(shù)構成一定的關系.每盆植入3株時,平均單株盈利3元;以同樣的栽培條件,若每盆增加1株,平均單株盈利就減少0.5元.要使每盆的盈利達到10元,每盆應該植多少株?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】大美開州,最帥漢豐湖,漢豐湖步道已成為市民最好休閑圣地.雪松和余樂樂相約分別從舉子園、博物館出發(fā),沿環(huán)湖步道相向而行.雪松開始跑步前進,中途在某地改為步行,且步行的速度為跑步速度的一半,雪松先出發(fā)5分鐘后,余樂樂才騎自行車勻速向舉子園行駛.雪松到達博物館恰好用了35分鐘.兩人之間的距離y(m)與雪松離開出發(fā)地的時間x(min)之間的函數(shù)圖象如圖所示,則當余樂樂剛到舉子園時,雪松離舉子園的距離為_____米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A,B分別是反比例函數(shù)y(x<0),y(x>0)的圖象上的點,且∠AOB=90°,tan∠BAO,則k的值為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=2x2+bx+c經(jīng)過(﹣3,0),(1,0)兩點
(1)求拋物線的解析式,并求出其開口方向和對稱軸
(2)用配方法求出該拋物線的頂點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“長跑“是中考體育必考項目之一,某中學為了了解九年級學生“長跑”的情況,隨機抽取部分九年級學生,測試其長跑成績(男子1000米,女子800米),按長跑時間長短依次分為A、B、C、D四個等級進行統(tǒng)計,制作出如下兩個不完整的統(tǒng)計圖.
根據(jù)所給信息,解答下列問題:
(1)在扇形統(tǒng)計用中,C對應的扇形圓心角是____度.
(2)補全條形統(tǒng)計圖.
(3)所抽取學生的“長跑”測試成績的中位數(shù)會落在_____等級.
(4)該校九年有486名學生,請估計“長跑”測試成績達到A級的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】【提出問題】
(1)如圖1,在等邊△ABC中,點M是BC上的任意一點(不含端點B、C),連結AM,以AM為邊作等邊△AMN,連結CN.求證:∠ABC=∠ACN.
【類比探究】
(2)如圖2,在等邊△ABC中,點M是BC延長線上的任意一點(不含端點C),其它條件不變,(1)中結論∠ABC=∠ACN還成立嗎?請說明理由.
【拓展延伸】
(3)如圖3,在等腰△ABC中,BA=BC,點M是BC上的任意一點(不含端點B、C),連結AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結CN.試探究∠ABC與∠ACN的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形紙片ABCD,AB=9,BC=6,在矩形邊上有一點P,且DP=3.將矩形紙片折疊,使點B與點P重合,折痕所在直線交矩形兩邊于點E,F(xiàn),則EF長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線的對稱軸為直線,且過點,有下列結論:
①;②;③;④;⑤,其中正確的結論有( )
A.①③⑤B.①②⑤C.①④⑤D.③④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com