1.解方程:
2.解方程組:
1.x=9
2.方程組的解為
【解析】(1)解:方程兩邊都乘以最簡公分母(x﹣3)(x+1)得:
3(x+1)=5(x﹣3),………………………………………………2分
解得:x=9,………………………………………………………….3分
檢驗:當x=9時,(x﹣3)(x+1)=60≠0,
∴原分式方程的解為x=9.………………………………………….4分
(2)解:用①代入②得:5x-3×3=1……………………………………….5分
5x=10,
∴x=2…………………………………………………………………6分
把x=2代入①得:y=1………………………………………………7分
∴方程組的解為
科目:初中數(shù)學 來源: 題型:
9 |
2 |
9 |
2 |
3 |
2 |
9 |
2 |
1 |
2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:閱讀理解
查看答案和解析>>
科目:初中數(shù)學 來源:2012-2013學年山東臨沭第三初級中學九年級10月月考數(shù)學試卷(帶解析) 題型:解答題
閱讀下面例題的解答過程,體會并其方法,并借鑒例題的解法解方程。
例:解方程x2--1=0.
解:(1)當x-1≥0即x≥1時,= x-1。
原化為方程x2-(x-1)-1=0,即x2-x=0
解得x1 =0.x2=1
∵x≥1,故x =0舍去,
∴x=1是原方程的解。
(2)當x-1<0即x<1時,=-(x-1)。
原化為方程x2+(x-1)-1=0,即x2+x-2=0
解得x1 =1.x2=-2
∵x<1,故x =1舍去,
∴x=-2是原方程的解。
綜上所述,原方程的解為x1 =1.x2=-2
解方程x2--4=0.
查看答案和解析>>
科目:初中數(shù)學 來源:2012-2013學年山東臨沭第三初級中學九年級10月月考數(shù)學試卷(解析版) 題型:解答題
閱讀下面例題的解答過程,體會并其方法,并借鑒例題的解法解方程。
例:解方程x2--1=0.
解:(1)當x-1≥0即x≥1時,= x-1。
原化為方程x2-(x-1)-1=0,即x2-x=0
解得x1 =0.x2=1
∵x≥1,故x =0舍去,
∴x=1是原方程的解。
(2)當x-1<0即x<1時,=-(x-1)。
原化為方程x2+(x-1)-1=0,即x2+x-2=0
解得x1 =1.x2=-2
∵x<1,故x =1舍去,
∴x=-2是原方程的解。
綜上所述,原方程的解為x1 =1.x2=-2
解方程x2--4=0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com