【題目】已知,如圖,E、F分別為矩形ABCD的邊AD和BC上的點(diǎn),AE=CF.求證:BE=DF.
【答案】證明見解析
【解析】證法一:∵四邊形ABCD為矩形,
∴AB=CD,∠A=∠C=90°.…………………………………………4分
在△ABE和△CDF中,……………………………………………………5分
∵, ∴△ABE≌△CDF(SAS),……………………8分
∴BE=DF(全等三角形對應(yīng)邊相等).…………………………………9分
證法二:∵四邊形ABCD為矩形,
∴AD∥BC,AD=BC,…………………………………………………3分
又∵AE=CF,∴AD-AE=BC-CF,……………………………5分
即ED=BF,…………………………………………………………………6分
而ED∥BF,
∴四邊形BFDE為平行四邊形………………………………………………8分
∴BE=DF(平行四邊形對邊相等).……………………………………9分
利用全等三角形對應(yīng)邊相等求證
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式計算正確的是( )
A.a2+a2=2a4
B.5m2﹣3m2=2
C.﹣x2y+yx2=0
D.4m2n﹣n2m=3m2n
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列3根小木棒能擺成三角形的是( )
(1)5cm,12cm,13cm;(2)3cm,3cm,4cm;(3)4cm,3cm,7cm;(4)2cm,3cm,6cm.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年4月14日日本熊本縣發(fā)生6.2級地震,據(jù)NHK報道,受強(qiáng)地震造成的田地受損,農(nóng)產(chǎn)品無法出售等影響,日本熊本縣農(nóng)林業(yè)遭受的地震損失最少可達(dá)236億日元,數(shù)據(jù)236億用科學(xué)記數(shù)法表示為( )
A.2.36×108
B.2.36×109
C.2.36×1010
D.2.36×1011
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,正六邊形ABCDEF在直角坐標(biāo)系內(nèi)的位置如圖所示,A(﹣2,0),點(diǎn)B在原點(diǎn),把正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,經(jīng)過2015次翻轉(zhuǎn)之后,點(diǎn)B的坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2﹣(m+3)x+9的頂點(diǎn)C在x軸正半軸上,一次函數(shù)y=x+3與拋物線交于A、B兩點(diǎn),與x、y軸分別交于D、E兩點(diǎn).
(1)求m的值;
(2)求A、B兩點(diǎn)的坐標(biāo);
(3)當(dāng)﹣3<x<1時,在拋物線上是否存在一點(diǎn)P,使得△PAB的面積是△ABC面積的2倍?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=x2+2x﹣3的圖象如圖所示,點(diǎn)A(x1,y1),B(x2,y2)是該二次函數(shù)圖象上的兩點(diǎn),其中﹣3≤x1<x2≤0,則下列結(jié)論正確的是( )
A. y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com