【題目】在△ABC中,AC=25,AB=35,tanA=,點(diǎn)D為邊AC上一點(diǎn),且AD=5,點(diǎn)E、F分別為邊AB上的動(dòng)點(diǎn)(點(diǎn)F在點(diǎn)E的左邊),且∠EDF=∠A.設(shè)AE=x,AF=y.
(1)如圖1,當(dāng)DF⊥AB時(shí),求AE的長(zhǎng);
(2)如圖2,當(dāng)點(diǎn)E、F在邊AB上時(shí),求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出函數(shù)的定義域;
(3)聯(lián)結(jié)CE,當(dāng)△DEC和△ADF相似時(shí),求x的值.
【答案】(1),(2) y=6-(≤x≤35);(3) x=25或x=5或x=.
【解析】
(1)先根據(jù)DF⊥AB,∠EDF=∠A,得出∠ADE=90°,再根據(jù)AD=5,tanA=,即可求出AE;
(2)過(guò)點(diǎn)D作DG⊥AB,交AB于G,先證出△EDF∽△EAD,得出ED2=AEEF,再求出DG、AG,最后根據(jù)EG=x-6,DE2=42+(x-3)2得出42+(x-3)2=x(x-y),再進(jìn)行整理即可;
(3)先證出∠AFD=∠EDC,再分兩種情況討論:①當(dāng)∠A=∠CED時(shí),得出,,再把y=6-代入得出5(6-)=x,再解方程即可;②當(dāng)∠A=∠DCE時(shí),根據(jù)△ECD∽△DAF得出,,再把y=6-代入得出5(6-)=x,求出方程的解即可.
(1)∵DF⊥AB,
∴∠AFD=90°,
∴∠A+∠ADF=90°
∵∠EDF=∠A,
∴∠EDF+∠ADF=90°,
即∠ADE=90°,
在Rt△ADE中,∠ADE=90°,AD=5,tanA=
∴DE=,
∴AE=,
(2)過(guò)點(diǎn)D作DG⊥AB,交AB于G,
∵∠EDF=∠ADE,∠DEF=∠AED,
∴△EDF∽△EAD,
∴,
∴ED2=AEEF,
∴RT△AGD中,∠AGD=90°,AD=5,tanA=,
∴DG=4,AG=3,
∴EG=x-3,
∴DE2=42+(x-3)2,
∴42+(x-3)2=x(x-y),
∴y=6-(≤x≤35);
(3)∵∠A+∠AFD=∠EDF+∠EDC,且∠EDF=∠A,
∴∠AFD=∠EDC,
①當(dāng)∠A=∠CED時(shí),
∵∠EDF=∠A,
又∵∠CED=∠FDE,
∴DF∥CE
∴,
∴
∵y=6-,
∴5(6-)=x,
x1=25,x2=5;
②當(dāng)∠A=∠DCE時(shí),
∵∠EDF=∠A,
∴△ECD∽△DAF
∴,,
∵y=6-,
∴5(6-)=x,
∴x=,
∴當(dāng)△DEC和△ADF相似時(shí),x=25或x=5或x=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠B=∠C=30°,點(diǎn)O是BC邊上一點(diǎn),以點(diǎn)O為圓心、OB為半徑的圓經(jīng)過(guò)點(diǎn)A,與BC交于點(diǎn)D.
⑴ 試說(shuō)明AC與⊙O相切;
⑵ 若,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線交x軸于點(diǎn)A(8,0),直線經(jīng)過(guò)點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)P是直線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線,過(guò)點(diǎn)B作y軸的垂線,兩條垂線交于點(diǎn)D,連接PB,設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)若點(diǎn)P的橫坐標(biāo)為m,則PD的長(zhǎng)度為 (用含m的式子表示);
(2)如圖1,已知點(diǎn)Q是直線上的一個(gè)動(dòng)點(diǎn),點(diǎn)E是x軸上的一個(gè)動(dòng)點(diǎn),是否存在以A,B,E,Q為頂點(diǎn)的平行四邊形,若存在,求出E的坐標(biāo);若不存在,說(shuō)明理由;
(3)如圖2,將△BPD繞點(diǎn)B旋轉(zhuǎn),得到△BD′P′,且旋轉(zhuǎn)角∠PBP′=∠OCA,當(dāng)點(diǎn)P的對(duì)應(yīng)點(diǎn)P′落在坐標(biāo)軸上時(shí),請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于A,B(1,0)兩點(diǎn),與y軸交于點(diǎn)C,直線y=x﹣2經(jīng)過(guò)A,C兩點(diǎn),拋物線的頂點(diǎn)為D.
(1)求拋物線的解析式;
(2)求拋物線的頂點(diǎn)D的坐標(biāo);
(3)在y軸上是否存在一點(diǎn)G,使得GD+GB的值最。咳舸嬖,求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)在直線AC的上方拋物線上是否存在點(diǎn)P,使△PAC的面積最大?若存在,直接寫(xiě)出P點(diǎn)坐標(biāo)及△PAC面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】電商時(shí)代使得網(wǎng)購(gòu)更加便捷和普及.小張響應(yīng)國(guó)家號(hào)召,自主創(chuàng)業(yè),開(kāi)了家淘寶店.他購(gòu)進(jìn)一種成本為100元/件的新商品,在試銷中發(fā)現(xiàn):銷售單價(jià)x(元)與每天銷售量y(件)之間滿足如圖所示的關(guān)系.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若某天小張銷售該產(chǎn)品獲得的利潤(rùn)為1200元,求銷售單價(jià)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】盒中有若干枚黑棋和白棋,這些棋除顏色外無(wú)其他差別,現(xiàn)讓學(xué)生進(jìn)行摸棋試驗(yàn):每次摸出一枚棋,記錄顏色后放回?fù)u勻.重復(fù)進(jìn)行這樣的試驗(yàn)得到以下數(shù)據(jù):
摸棋的次數(shù)n | 100 | 200 | 300 | 500 | 800 | 1000 |
摸到黑棋的次數(shù)m | 24 | 51 | 76 | 124 | 201 | 250 |
摸到黑棋的頻率(精確到0.001) | 0.240 | 0.255 | 0.253 | 0.248 | 0.251 | 0.250 |
(1)根據(jù)表中數(shù)據(jù)估計(jì)從盒中摸出一枚棋是黑棋的概率是 ;(精確到0.01)
(2)若盒中黑棋與白棋共有4枚,某同學(xué)一次摸出兩枚棋,請(qǐng)計(jì)算這兩枚棋顏色不同的概率,并說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=-x2+1,下列結(jié)論:
①拋物線開(kāi)口向上;
②拋物線與x軸交于點(diǎn)(-1,0)和點(diǎn)(1,0);
③拋物線的對(duì)稱軸是y軸;
④拋物線的頂點(diǎn)坐標(biāo)是(0,1);
⑤拋物線y=-x2+1是由拋物線y=-x2向上平移1個(gè)單位得到的.
其中正確的個(gè)數(shù)有( )
A. 5個(gè)B. 4個(gè)C. 3個(gè)
D. 2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn),將繞坐標(biāo)原點(diǎn)順時(shí)針旋轉(zhuǎn)至,則點(diǎn)的坐標(biāo)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+2ax+c(其中a、c為常數(shù),且a<0)與x軸交于點(diǎn)A(﹣3,0),與y軸交于點(diǎn)B,此拋物線頂點(diǎn)C到x軸的距離為4.
(1)求拋物線的表達(dá)式;
(2)求∠CAB的正切值;
(3)如果點(diǎn)P是x軸上的一點(diǎn),且∠ABP=∠CAO,直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com