【題目】如圖,△ABC中,∠B=∠C=30°,點O是BC邊上一點,以點O為圓心、OB為半徑的圓經(jīng)過點A,與BC交于點D.
⑴ 試說明AC與⊙O相切;
⑵ 若,求圖中陰影部分的面積.
【答案】(1)見解析;(2)
【解析】
(1)連接OA,先得出∠OAB=30°,再解得∠OAC=90°,從而可判斷出AC與⊙O的位置關系;
(2)連接AD,設OA的長度為x,根據(jù)“陰影部分的面積=△OAC的面積-扇形OAD的面積”列出方程即可求解.
⑴ 連接OA.
∵ OA=OB
∴ ∠OAB=∠B
∵ ∠B=30°
∴ ∠OAB=30°
△ABC中:∠B=∠C=30°
∴ ∠BAC=180°-∠B-∠C=120°
∴ ∠OAC=∠BAC-∠OAB=120°-30°=90°
∴ OA⊥AC
∴ AC是⊙O的切線,即AC與⊙O相切.
⑵ 連接AD.
∵ ∠C=30°,∠OAC=90°
∴ OC=2OA
設OA的長度為x,則OC=2x
在△OAC中,∠OAC=90°,
根據(jù)勾股定理可得:
解得:,(不合題意,舍去)
∴,
∴
答:圖中陰影部分的面積為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在由邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點△ABC(頂點是網(wǎng)格線的交點)和點A1.
(1)將△ABC繞點A順時針旋轉(zhuǎn)90°,畫出相應的△AB1C1;
(2)將△AB1C1沿射線AA1平移到△A1B2C2處,畫出△A1B2C2;
(3)點C在兩次變換過程中所經(jīng)過的路徑長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=(x+m)2+k的圖象,其頂點坐標為M(1,﹣4).
(1)求出圖象與x軸的交點A、B的坐標;
(2)在y軸上存在一點Q,使得△QMB周長最小,求出Q點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+2ax+c的圖象與x軸交于A、B兩點(點A在點B的左邊)AB=4,與y軸交于點C,OC=OA,點D為拋物線的頂點.
(1)求拋物線的解析式;
(2)點M(m,0)為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N,可得矩形PQNM,如圖1,點P在點Q左邊,當矩形PQNM的周長最大時,求m的值,并求出此時的△AEM的面積;
(3)在(2)的條件下,當矩形PMNQ的周長最大時,連接DQ,過拋物線上一點F作y軸的平行線,與直線AC交于點G(點G在點F的上方),若FG=DQ,求點F的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在在四邊形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若動點P從A點出發(fā),以每秒2cm的速度沿線段AD向點D運動;動點Q從C點出發(fā)以每秒3cm的速度沿CB向B點運動,當P點到達D點時,動點P、Q同時停止運動,設點P、Q同時出發(fā),并運動了t秒,回答下列問題:
(1)BC= cm;
(2)當t= 秒時,四邊形PQBA成為矩形.
(3)是否存在t,使得△DQC是等腰三角形?若存在,請求出t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點O作OF⊥BC于F,若BD=16cm,AE=4cm.
(1)求⊙O的半徑;
(2)求OF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于、兩點,與軸交于點,且.
(1)求拋物線的解析式和頂點的坐標;
(2)判斷的形狀,證明你的結論;
(3)點是軸上的一個動點,當的周長最小時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AC=25,AB=35,tanA=,點D為邊AC上一點,且AD=5,點E、F分別為邊AB上的動點(點F在點E的左邊),且∠EDF=∠A.設AE=x,AF=y.
(1)如圖1,當DF⊥AB時,求AE的長;
(2)如圖2,當點E、F在邊AB上時,求y關于x的函數(shù)關系式,并寫出函數(shù)的定義域;
(3)聯(lián)結CE,當△DEC和△ADF相似時,求x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com