【題目】綜合與探究:

已知二次函數(shù)y=﹣x2+x+2的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的左側(cè)),與y軸交于點(diǎn)C

1)求點(diǎn)A,BC的坐標(biāo);

2)求證:ABC為直角三角形;

3)如圖,動(dòng)點(diǎn)E,F同時(shí)從點(diǎn)A出發(fā),其中點(diǎn)E以每秒2個(gè)單位長度的速度沿AB邊向終點(diǎn)B運(yùn)動(dòng),點(diǎn)F以每秒個(gè)單位長度的速度沿射線AC方向運(yùn)動(dòng).當(dāng)點(diǎn)F停止運(yùn)動(dòng)時(shí),點(diǎn)E隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,連結(jié)EF,將AEF沿EF翻折,使點(diǎn)A落在點(diǎn)D處,得到DEF.當(dāng)點(diǎn)FAC上時(shí),是否存在某一時(shí)刻t,使得DCO≌△BCO?(點(diǎn)D不與點(diǎn)B重合)若存在,求出t的值;若不存在,請說明理由.

【答案】(1)點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)B的坐標(biāo)為(﹣10),點(diǎn)C的坐標(biāo)為(02);(2)證明見解析;(3t.

【解析】

1)利用x=0y=0解方程即可求出AB、C三點(diǎn)坐標(biāo);
2)先計(jì)算△ABC的三邊長,根據(jù)勾股定理的逆定理可得結(jié)論;
3)先證明△AEF∽△ACB,得∠AEF=ACB=90°,確定△AEF沿EF翻折后,點(diǎn)A落在x軸上點(diǎn)D處,根據(jù)△DCO≌△BCO時(shí),BO=OD,列方程4-4t=1,可得結(jié)論.

1)解:當(dāng)y0時(shí),﹣x+20,

解得:x11,x24

點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)B的坐標(biāo)為(﹣1,0),

當(dāng)x0時(shí),y2,

點(diǎn)C的坐標(biāo)為(0,2);

2)證明:A4,0),B(﹣1,0),C0,2),

OA4,OB1OC2

AB5,AC,

AC2+BC225AB2

∴△ABC為直角三角形;

3)解:由(2)可知ABC為直角三角形.且ACB90°

AE2t,AFt,

,

∵∠EAFCAB,

∴△AEF∽△ACB,

∴∠AEFACB90°,

∴△AEF沿EF翻折后,點(diǎn)A落在x軸上點(diǎn) D處,

由翻折知,DEAE,

AD2AE4t

當(dāng)DCO≌△BCO時(shí),BOOD,

OD44t,BO1

∴44t1,t

即:當(dāng)t秒時(shí),DCO≌△BCO

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)yx2+bx+c過點(diǎn)A1,0),C0,﹣3

1)求此二次函數(shù)的解析式及頂點(diǎn)坐標(biāo).

2)設(shè)點(diǎn)P是該拋物線上的動(dòng)點(diǎn),當(dāng)△ABP的面積等于△ABC面積的時(shí),求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)圖象的頂點(diǎn)在原點(diǎn),對稱軸為軸.一次函數(shù)的圖象與二次函數(shù)的圖象交于,兩點(diǎn)(的左側(cè)),且點(diǎn)坐標(biāo)為.平行于軸的直線點(diǎn).

求一次函數(shù)與二次函數(shù)的解析式;

判斷以線段為直徑的圓與直線的位置關(guān)系,并給出證明;

把二次函數(shù)的圖象向右平移個(gè)單位,再向下平移個(gè)單位,二次函數(shù)的圖象與軸交于,兩點(diǎn),一次函數(shù)圖象交軸于點(diǎn).當(dāng)為何值時(shí),過,,三點(diǎn)的圓的面積最小?最小面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB的直徑,C、D上兩點(diǎn),且,垂足為F,直線CFAB的延長線于點(diǎn)E,連接AC

1)判斷EF的位置關(guān)系,并說明理由:

2)若,的半徑為4,求線段CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,,,垂足分別為,且三個(gè)垂足在同一直線上.

1)證明:;

2)已知地物線軸交于點(diǎn),頂點(diǎn)為,如圖乙所示,若是拋物線上異于的點(diǎn),使得,求點(diǎn)坐標(biāo)(提示:可結(jié)合第(1)小題的思路解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐:

問題情境:在一次綜合實(shí)踐活動(dòng)課上,同學(xué)們以菱形為對象,研究菱形旋轉(zhuǎn)中的問題:已知,在菱形, 為對角線, ,,將菱形繞頂點(diǎn)順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為(單位),旋轉(zhuǎn)后的菱形為,在旋轉(zhuǎn)探究活動(dòng)中提出下列問題,請你幫他們解決.

觀察證明:

(1)如圖1,若旋轉(zhuǎn)角,相交于點(diǎn),相交于點(diǎn),請說明線段的數(shù)量關(guān)系;

操作計(jì)算:

(2)如圖2,連接,菱形旋轉(zhuǎn)的過程中,當(dāng)互相垂直時(shí), 的長為 ;

(3)如圖3,若旋轉(zhuǎn)角,分別連接,,過點(diǎn)分別作,,連接,菱形旋轉(zhuǎn)的過程中,發(fā)現(xiàn)在中存在長度不變的線段,請求出長度;

操作探究:

(4)如圖4,(3)的條件下,請判斷以,,三條線段長度為邊的三角形是什么特殊三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,并規(guī)定:顧客購物10元以上就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),當(dāng)轉(zhuǎn)盤停止時(shí),指針落在哪一區(qū)域就可以獲得相應(yīng)的獎(jiǎng)品。下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):

(1)計(jì)算并完成表格:

轉(zhuǎn)動(dòng)轉(zhuǎn)盤的次數(shù)n

100

150

200

500

800

1000

落在“鉛筆”的次數(shù)m

68

111

136

345

564

701

落在“鉛筆”的頻率m/n

0.68

0.74

0.69

0.705

(2)請估計(jì),當(dāng)n很大時(shí),頻率將會(huì)接近多少?

(3)假如你去轉(zhuǎn)動(dòng)該轉(zhuǎn)盤一次,你獲得鉛筆的概率約是多少?

(4)在該轉(zhuǎn)盤中,表示“鉛筆”區(qū)域的扇形的圓心角約是多少?(精確到1°)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代著名數(shù)學(xué)經(jīng)典,其中對勾股定理的論述比西方早一千多年,其中有這樣一個(gè)問題:今有圓材埋在壁中,不知大小.以鋸鋸之,深一寸,鋸道長一尺.問徑幾何?其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深1寸,鋸道長1.如圖,已知弦尺,弓形高寸,(注:1=10寸)問這塊圓柱形木材的直徑是(

A.13B.6.5C.20D.26

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A-13),B-21),C-3,1).

1畫出△ABC關(guān)于y軸對稱的△A1B1C1,并寫出A1點(diǎn)的坐標(biāo)及sin∠B1C1A1的值;

2以原點(diǎn)O為位似中心位似比為12,y軸的左側(cè),畫出將△ABC放大后的△A2B2C2,并寫出A2點(diǎn)的坐標(biāo);

3若點(diǎn)D為線段BC的中點(diǎn)直接寫出經(jīng)過2的變化后點(diǎn)D的對應(yīng)點(diǎn)D2的坐標(biāo)

查看答案和解析>>

同步練習(xí)冊答案