【題目】按下面的程序計算,當輸入x=100時,輸出結(jié)果為501;當輸入x=20時,輸出結(jié)果為506;如果開始輸入的值x為正數(shù),最后輸出的結(jié)果為656,那么滿足條件的x的值最多有(  )

A. 5 B. 4 C. 3 D. 2

【答案】B

【解析】

利用逆向思維來做,分析第一個數(shù)就是直接輸出656,可得方程5x+1=656,解方程即可求得第一個數(shù),再求得輸出為這個數(shù)的第二個數(shù),以此類推即可求得所有答案.

第一個數(shù)就是直接輸出其結(jié)果時:5x+1=656,

解得:x=131>0,

第二個數(shù)就是直接輸出其結(jié)果時:5x+1=131

解得:x=26>0;

第三個數(shù)就是直接輸出其結(jié)果時:5x+1=26,

解得:x=5>0,

第四個數(shù)就是直接輸出其結(jié)果時:5x+1=5,

解得:x=0.8>0;

第五個數(shù)就是直接輸出其結(jié)果時:5x+1=0.8,

解得:x=-0.4<0;

故滿足條件所有x的值是131、26、5、0.8.

故答案選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=BC,BEAC于點E,ADBC于點D,BAD=45°,AD與BE交于點F,連接CF.

(1)求證:BF=2AE;

(2)若CD=,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知兩點A(m,0),B(0,n)(n>m>0),點C在第一象限,ABBC,BC=BA,點P在線段OB上,OP=OA,AP的延長線與CB的延長線交于點M,AB與CP交于點N.

(1)點C的坐標為: (用含m,n的式子表示);

(2)求證:BM=BN;

(3)設(shè)點C關(guān)于直線AB的對稱點為D,點C關(guān)于直線AP的對稱點為G,求證:D,G關(guān)于x軸對稱.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規(guī)律,經(jīng)過第2011次運動后,動點P的坐標是(
A.(2011,0)
B.(2011,1)
C.(2011,2)
D.(2010,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的有( 。

最大的負整數(shù)是﹣1;②|a|=a;③a+5一定比a大;④38萬用科學(xué)記數(shù)法表示為38×104;⑤單項式﹣ 的系數(shù)是﹣2,次數(shù)是3;⑥﹣<﹣;⑦長方體的截面中,邊數(shù)最多的多邊形是七邊形.

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實踐

問題情境:在棱長為1的正方體右側(cè)拼搭若干個棱長小于或等于1的其它正方體,使拼成的立體圖形為一個長方體.如圖1,是兩個棱長為1的正方體搭成的長方體,圖2是從上面看這個長方體得到的平面圖形,它由兩個正方形組成.

操作探究:

(1)如圖3是在棱長為1的正方體右側(cè)拼搭了4個棱長小于1的正方體形成的長方體,請畫出從上面看這個長方體得到的平面圖形;

(2)已知一個長方體是按上述方式拼成的,組成它的正方體不超過10個,且若從上面看這個長方體得到的平面圖形由4個正方形組成.

請從A,B兩題中任選一題作答,我選擇   題.

A.請畫出從上面看這個長方體得到的平面圖形.(請畫出所有可能的圖形)

B.請畫出從上面看這個長方體得到的平面圖形.(請畫出所有可能的圖形,并在所畫圖形的下方直接寫出拼成該長方體所需的正方體的總個數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°D、E分別為AB,AC邊上的中點,連接DE,將△ADE繞點E旋轉(zhuǎn)180°得到△CFE,連接AF,AC

1)求證:四邊形ADCF是菱形;

2)若BC=8AC=6,求四邊形ABCF的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①2a+b=0;②a+c>b;③拋物線與x軸的另一個交點為(3,0);④abc>0.其中正確的結(jié)論是(填寫序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將△ABC的邊AB繞點A順時針旋轉(zhuǎn)α得到AB,邊AC繞點A逆時針旋轉(zhuǎn)β得到AC′,αβ=180°.連接BC,作△ABC的中線AD

(初步感知)

(1)如圖,當∠BAC=90°,BC=4時,AD的長為______;

(探索證明)

(2)如圖②,△ABC為任意三角形時,猜想ADBC的數(shù)量關(guān)系,并證明

(應(yīng)用延伸)

(3)如圖,已知等腰△ACB,AC=BC=m,延長ACD,延長CBE,使CD=CE=n,將△CEDC順時針旋轉(zhuǎn)一周得到△CED,連接BE′、AD,若∠CBE′=90°,求AD的長度(用含m、n的代數(shù)式表示)

查看答案和解析>>

同步練習(xí)冊答案