【題目】如圖,△ABC中,∠BAC80°,若MPNQ分別垂直平分ABAC

(1)求∠PAQ的度數(shù).

(2)若△APQ周長為12,BC長為8,求PQ的長.

【答案】(1)PAQ20°;(2)PQ2

【解析】

1)設(shè)∠PAQx,∠CAPy,∠BAQz,根據(jù)線段垂直平分線的性質(zhì)得:APPBAQCQ,由等腰三角形的性質(zhì)得:∠B=∠BAPx+z,∠C=∠CAQx+y,再由三角形內(nèi)角和定理相加可得結(jié)論;

2)根據(jù)△APQ周長為12,列等式為AQ+PQ+AP12,由等量代換得BC+2PQ12,可得PQ的長.

(1)設(shè)∠PAQx,∠CAPy∠BAQz,

∵M(jìn)PNQ分別垂直平分ABAC,

∴APPB,AQCQ

∴∠B∠BAPx+z,∠C∠CAQx+y

∵∠BAC80°,

∴∠B+∠C100°

x+y+z80°,x+z+x+y100°

∴x20°,

∴∠PAQ20°

(2)∵△APQ周長為12,

∴AQ+PQ+AP12,

∵AQCQAPPB,

∴CQ+PQ+PB12

CQ+BQ+2PQ12,

BC+2PQ12

∵BC8,

∴PQ2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(類比概念)三角形的內(nèi)切圓是以三個內(nèi)角的平分線的交點為圓心,以這點到三邊的距離為半徑的圓,則三角形可以稱為圓的外切三角形,可以得出三角形的三邊與該圓相切.以此類推,如圖1,各邊都和圓相切的四邊形稱為圓外切四邊形

(性質(zhì)探究)如圖1,試探究圓外切四邊形的ABCD兩組對邊AB,CDBC,AD之間的數(shù)量關(guān)系

猜想結(jié)論:   (要求用文字語言敘述)

寫出證明過程(利用圖1,寫出已知、求證、證明)

(性質(zhì)應(yīng)用)

①初中學(xué)過的下列四邊形中哪些是圓外切四邊形   (填序號)

A:平行四邊形:B:菱形:C:矩形;D:正方形

②如圖2,圓外切四邊形ABCD,且AB=12,CD=8,則四邊形的周長是   

③圓外切四邊形的周長為48cm,相鄰的三條邊的比為5:4:7,求四邊形各邊的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利45元,為了擴(kuò)大銷售、增加盈利盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出4件,若商場平均每天盈利2100元,每件襯衫應(yīng)降價多少元?請完成下列問題:

(1)未降價之前,某商場襯衫的總盈利為    元.

(2)降價后,設(shè)某商場每件襯衫應(yīng)降價x元,則每件襯衫盈利   元,平均每天可售出   件(用含x的代數(shù)式進(jìn)行表示)

(3)請列出方程,求出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年的423日被聯(lián)合國教科文組織確定為世界讀書日.為滿足同學(xué)們的讀書需某校圖書室在今年世界讀書日期間準(zhǔn)備到書店購買文學(xué)名著和科普讀物兩類圖書.已知20本文學(xué)名著和40本科普讀物共需1520元,20本文學(xué)名著比20本科普讀物多440元(注:所采購的文學(xué)名著價格都一樣,所購買的科普讀物的價格都一樣).

(1)每本文學(xué)名著和科普讀物各多少元?

(2)若學(xué)校要求購買科普讀物比文學(xué)名著多20本,科普讀物和文學(xué)名著總數(shù)不低于72本,總費(fèi)用不超過2000元,請求出所有符合條件的購書方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AE平分BAD,交BC于點E.

(1)在AD上求作點F,使點F到CD和BC的距離相等;

(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)

(2)判斷四邊形AECF是什么特殊四邊形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x+3與x軸相交于點A,與y軸相交于點B.

(1)求A,B兩點的坐標(biāo);

(2)過B點作直線BP與x軸相交于P,且使OP=2OA, 求ΔABP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠ABC+D=180°,AC平分∠BAD,CEAB,CFAD.試說明:

1CBE≌△CDF

2AB+DF=AF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD中,EAD邊上的一個動點,點F,G,H分別是BC,BE,CE的中點.

(1)求證:BGF≌△FHC;

(2)設(shè)AD=a,當(dāng)四邊形EGFH是正方形時,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于、兩點,直線軸交于點,與軸交于點.點是拋物線上一動點,過點作直線軸于點,交直線于點.設(shè)點的橫坐標(biāo)為

求拋物線的解析式;

若點軸上方的拋物線上,當(dāng)時,求點的坐標(biāo);

若點是點關(guān)于直線的對稱點,當(dāng)點落在軸上時,請直接寫出的值.

查看答案和解析>>

同步練習(xí)冊答案