【題目】如圖,D,E,F分別是OA,OB,OC的中點,下面的說法中:①△ABC與△DEF是位似圖形;②△ABC與△DEF的相似比為1∶2;③△ABC與△DEF的周長之比為2∶1;④△ABC與△DEF的面積之比為4∶1.正確的是( )
A. ①②③ B. ①③④ C. ①②④ D. ②③④
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AD⊥BC,垂足為D.給出下列四個結(jié)論:①sinα=sinB;②sinβ=sinC;③sinB=cosC;④sinα=cosβ.其中正確的結(jié)論有_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,拋物線y=﹣x2+bx+c經(jīng)過點A(﹣1,0)和C(0,3).(1)求拋物線的解析式;(2)在拋物線的對稱軸上,是否存在點P,使PA+PC的值最小?如果存在,請求出點P的坐標,如果不存在,請說明理由;(3)設點M在拋物線的對稱軸上,當△MAC是直角三角形時,求點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某民俗村為了維護消費者利益,限定村內(nèi)所有商品的利潤率不得超過,村內(nèi)一商店以每件16元的價格購進一批商品,該商品每件售價定為x元,每天可賣出件,每天銷售該商品所獲得的利潤為y元.
求y與x的函數(shù)關(guān)系式;
若每天銷售該商品要獲得280元的利潤,每件商品的售價應定為多少元?
求商店每天銷售該商品可獲得的最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,正三角形和正方形內(nèi)接于同一個圓;如圖②,正方形和正五邊形內(nèi)接于同一個圓;如圖③,正五邊形和正六邊形內(nèi)接于同一個圓;…;則對于圖①來說,BD可以看作是正_____邊形的邊長;若正n邊形和正(n+1)邊形內(nèi)接于同一個圓,連接與公共頂點相鄰同側(cè)兩個不同正多邊形的頂點可以看做是_____邊形的邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中有兩點A(﹣2,4)、B(2,4),若二次函數(shù)y=ax2﹣2ax﹣3a(a≠0)的圖象與線段AB只有一個交點,則( )
A. a的值可以是 B. a的值可以是
C. a的值不可能是﹣1.2 D. a的值不可能是1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,圖象經(jīng)過B(﹣3,0)、C(0,3)兩點,且與x軸交于點A.
(1)求二次函數(shù)y=ax2+bx+c(a≠0)的表達式;
(2)在拋物線的對稱軸上找一點M,使△ACM周長最短,求出點M的坐標;
(3)若點P為拋物線對稱軸上的一個動點,直接寫出使△BPC為直角三角形時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:Rt△ABC中,∠ACB=90°,點E為AB上一點,AC=AE=3,BC=4,過點A作AB的垂線交射線EC于點D,延長BC交AD于點F.
(1)求CF的長;
(2)求∠D的正切值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(-4,2),B(-2,6),C(0,4)是直角坐標系平面上三點.
(1)把△ABC向右平移4個單位再向下平移1個單位,得到△A1B1C1,畫出平移后的圖形;
(2)若△ABC內(nèi)部有一點P(a,b),則平移后它的對應點P1的坐標為__________;
(3)以原點O為位似中心,將△ABC縮小為原來的一半,得到△A2B2C2,請在所給的坐標系中作出所有滿足條件的圖形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com