【題目】如圖,將邊長(zhǎng)為4的正方形紙片ABCD折疊,使得點(diǎn)A落在邊CD的中點(diǎn)E處,折痕為FG,點(diǎn)F、G分別在邊AD、BC上,則折痕FG的長(zhǎng)度為_____.

【答案】2

【解析】

過點(diǎn)GGHADH,根據(jù)翻折變換的性質(zhì)可得GFAE,然后求出∠GFH=D,再利用角角邊證明ADEGHF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得GF=AE,再利用勾股定理列式求出AE,從而得解.

如圖,過點(diǎn)GGHADH,

則四邊形ABGH中,HG=AB,

由翻折變換的性質(zhì)得GFAE,

∵∠AFG+DAE=90°,∠AED+DAE=90°,

∴∠AFG=AED

∵四邊形ABCD是正方形,

AD=AB

HG=AD,

ADEGHF中,

,

∴△ADE≌△GHFAAS),

GF=AE,

∵點(diǎn)ECD的中點(diǎn),

DE=CD=2

RtADE中,由勾股定理得,AE=

GF的長(zhǎng)為2

故答案為:2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為矩形,H、F分別為AD、BC邊的中點(diǎn),四邊形EFGH為矩形,E、G分別在AB、CD邊上,則圖中四個(gè)直角三角形面積之和與矩形EFGH的面積之比為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)對(duì)本校初2017500名學(xué)生中中考參加體育加試測(cè)試情況進(jìn)行調(diào)查,根據(jù)男生1000米及女生800米測(cè)試成績(jī)整理,繪制成不完整的統(tǒng)計(jì)圖,(圖①,圖②),請(qǐng)根據(jù)統(tǒng)計(jì)圖提供的信息,回答下列問題:

(1)該校畢業(yè)生中男生有 人;扇形統(tǒng)計(jì)圖中a= ;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若500名學(xué)生中隨機(jī)抽取一名學(xué)生,這名學(xué)生該項(xiàng)成績(jī)?cè)?/span>8分及8分以下的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知MB=ND,∠MBA=NDC,下列哪個(gè)條件不能判定ABM≌△CDN

A.AM=CNB.AB=CD C.AMCN D.M=N

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,將邊BC沿斜邊上的中線CD折疊到CB′,若∠B=48°,則∠ACB′=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),AE和過點(diǎn)C的切線互相垂直,垂足為E,AE交⊙O于點(diǎn)D,直線EC交AB的延長(zhǎng)線于點(diǎn)P,連接AC,BC,PC=2PB.

(1)探究線段PB,AB之間的數(shù)量關(guān)系,并說明理由;
(2)若AD=3,求AB長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形ABCD中、∠BAD120°,點(diǎn)O為射線CA 上的動(dòng)點(diǎn),作射線OM與直線BC相交于點(diǎn)E,將射線OM繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°,得到射線ON,射線ON與直線CD相交于點(diǎn)F

1)如圖①,點(diǎn)O與點(diǎn)A重合時(shí),點(diǎn)E,F分別在線段BC,CD上,請(qǐng)直接寫出CE,CF,CA三條段段之間的數(shù)量關(guān)系;

2)如圖②,點(diǎn)OCA的延長(zhǎng)線上,且OAAC,E,F分別在線段BC的延長(zhǎng)線和線段CD的延長(zhǎng)線上,請(qǐng)寫出CE,CF,CA三條線段之間的數(shù)量關(guān)系,并說明理由;

3)點(diǎn)O在線段AC上,若AB6,BO2,當(dāng)CF1時(shí),請(qǐng)直接寫出BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD是BC邊上的高,BE平分∠ABC交AC邊于E,兩線相交于F點(diǎn).

(1)若∠BAC=60°,∠C=70°,求∠AFB的大。

(2)若D是BC的中點(diǎn),∠ABE=30°,求證:△ABC是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一元一次方程的根是一元一次不等式組的解,則稱該一元一次方程為該不等式組的關(guān)聯(lián)方程.

1)在方程①3x10,②x+10,③x﹣(3x+1)=﹣5中,不等式組的關(guān)聯(lián)方程是   ;(填序號(hào))

2)若不等式組的一個(gè)關(guān)聯(lián)方程的根是整數(shù),則這個(gè)關(guān)聯(lián)方程可以是   ;(寫出一個(gè)即可)

3)若方程3x2x,3+x2x+)都是關(guān)于x的不等式組的關(guān)聯(lián)方程,直接寫出m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案