【題目】今年 3 月 12 日植樹節(jié)期間, 學(xué)校預(yù)購(gòu)進(jìn) A、B 兩種樹苗,若購(gòu)進(jìn) A種樹苗 3 棵,B 種樹苗 5 棵,需 2100 元,若購(gòu)進(jìn) A 種樹苗 4 棵,B 種樹苗 10棵,需 3800 元.

(1)求購(gòu)進(jìn) A、B 兩種樹苗的單價(jià);

(2)若該單位準(zhǔn)備用不多于 8000 元的錢購(gòu)進(jìn)這兩種樹苗共 30 棵,求 A 種樹苗至少需購(gòu)進(jìn)多少棵?

【答案】(1)購(gòu)進(jìn) A 種樹苗的單價(jià)為 200 元/棵,購(gòu)進(jìn) B 種樹苗的單價(jià)為 300 元/棵(2)A 種 樹苗至少需購(gòu)進(jìn) 10 棵

【解析】

(1)設(shè)購(gòu)進(jìn)A種樹苗的單價(jià)為x/棵,購(gòu)進(jìn)B種樹苗的單價(jià)為y/棵,根據(jù)“若購(gòu)進(jìn)A種樹苗3棵,B種樹苗5棵,需2100元,若購(gòu)進(jìn)A種樹苗4棵,B種樹苗10棵,需3800元”,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論;
(2)設(shè)需購(gòu)進(jìn)A種樹苗a棵,則購(gòu)進(jìn)B種樹苗(30-a)棵,根據(jù)總價(jià)=單價(jià)×購(gòu)買數(shù)量結(jié)合購(gòu)買兩種樹苗的總費(fèi)用不多于8000元,即可得出關(guān)于a的一元一次不等式,解之取其中的最小值即可得出結(jié)論.

設(shè)購(gòu)進(jìn) A 種樹苗的單價(jià)為 x /棵,購(gòu)進(jìn) B 種樹苗的單價(jià)為 y /棵,根據(jù)題意得: ,

解得:

答:購(gòu)進(jìn) A 種樹苗的單價(jià)為 200 /棵,購(gòu)進(jìn) B 種樹苗的單價(jià)為 300 /棵.

(2)設(shè)需購(gòu)進(jìn) A 種樹苗 a 棵,則購(gòu)進(jìn) B 種樹苗(30﹣a)棵,根據(jù)題意得:

200a+300(30﹣a)≤8000,

解得:a≥10.

A種樹苗至少需購(gòu)進(jìn) 10 棵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接購(gòu)物節(jié),某網(wǎng)店準(zhǔn)備購(gòu)進(jìn)甲、乙兩種運(yùn)動(dòng)鞋,甲種運(yùn)動(dòng)鞋每雙的進(jìn)價(jià)比乙種運(yùn)動(dòng)鞋每雙的進(jìn)價(jià)多60元,用30000元購(gòu)進(jìn)甲種運(yùn)動(dòng)鞋的數(shù)量與用21000元購(gòu)進(jìn)乙種運(yùn)動(dòng)鞋的數(shù)量相同.

1)求甲、乙兩種運(yùn)動(dòng)鞋的進(jìn)價(jià)(用列分式方程的方法解答):

2)該網(wǎng)店老板計(jì)劃購(gòu)進(jìn)這兩種運(yùn)動(dòng)鞋共200雙,且甲種運(yùn)動(dòng)鞋的進(jìn)貨數(shù)量不少于乙種運(yùn)動(dòng)鞋數(shù)量的,甲種運(yùn)動(dòng)鞋每雙售價(jià)為350元,乙種運(yùn)動(dòng)鞋每雙售價(jià)為300元.設(shè)甲種運(yùn)動(dòng)鞋的進(jìn)貨量為m雙,銷售完甲、乙兩種運(yùn)動(dòng)鞋的總利潤(rùn)為w元,求wm的函數(shù)關(guān)系式,并求總利潤(rùn)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù)y=﹣2x+1,下列結(jié)論正確的是(  )

A. 圖象必經(jīng)過(guò)點(diǎn)(﹣2,1) B. 圖象經(jīng)過(guò)第一、二、三象限

C. 當(dāng)x>時(shí),y<0 D. y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)F,C是⊙O上兩點(diǎn),且,連接AC,AF,過(guò)點(diǎn)CCDAFAF延長(zhǎng)線于點(diǎn)D,垂足為D.

(1)求證:CD是⊙O的切線;

(2)CD=2求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線y=-分別與x軸、y軸交于點(diǎn)A、B,且點(diǎn)A的坐標(biāo)為(8,0),四邊形ABCD是正方形.

1)填空:b= ;

2)求點(diǎn)D的坐標(biāo);

3)點(diǎn)M是線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)A、B除外),試探索在x上方是否存在另一個(gè)點(diǎn)N,使得以O、B、M、N為頂點(diǎn)的四邊形是菱形?若不存在,請(qǐng)說(shuō)明理由;若存在,請(qǐng)求出點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,A(﹣3,0),B(0,4),對(duì)△AOB按圖示方式連續(xù)作旋轉(zhuǎn)變換,這樣算到的第2016個(gè)三角形時(shí),A點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為( 。

A. (8064,4) B. (8064,0) C. (8064,3) D. (8061,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的內(nèi)角∠ABC和外角∠ACD的平分線相交于點(diǎn)E,BEAC于點(diǎn)F,過(guò)點(diǎn)EEGBDAB于點(diǎn)G,交AC于點(diǎn)H,連接AE,有以下結(jié)論:

①∠BEC=BAC;②△HEF≌△CBF;BG=CH+GH;④∠AEB+ACE=90°,其中正確的結(jié)論有_____(將所有正確答案的序號(hào)填寫在橫線上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形是由等邊和頂角為120°的等腰三角形拼成,將一個(gè)60°角頂點(diǎn)放在點(diǎn)處,60°角兩邊分別交直線,交直線兩點(diǎn).

1)當(dāng)都在線段上時(shí),探究之間的數(shù)量關(guān)系,并證明你的結(jié)論;

2)當(dāng)在邊的延長(zhǎng)線上時(shí),求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,BABC,CDBEABC的兩條高,∠BCD45°BECD交于點(diǎn)H

1)求證:BDH≌△CDA;

2)求證:BH2AE

查看答案和解析>>

同步練習(xí)冊(cè)答案