【題目】如圖,在正方形紙片ABCD中,對(duì)角線AC、BD交于點(diǎn)O,折疊正方形紙片 ABCD,使AD落在BD上,點(diǎn)A恰好與BD上的點(diǎn)F重合.展開后,折痕DE分別交AB、 AC于點(diǎn)E、G.連接GF.則下列結(jié)論錯(cuò)誤的是( )
A. ∠AGD=112.5° B. 四邊形AEFG是菱形 C. tan∠AED=2 D. BE=2OG
【答案】C
【解析】解:∵ AC、BD是正方形ABCD的對(duì)角線,
∴∠ABD=∠GAD=∠ADB=∠BAC=45°,
由對(duì)折的性質(zhì)得DE平分∠ADB,
∴ ∠ADG=22.5°,
∵ ∠GAD+∠ADG+∠AGD=180°,∠ADG=22.5°,∠GAD=45°,
∴ ∠AGD=112.5°,
故A正確;
由題意知,四邊形AEFG是平行四邊形,
由對(duì)折的性質(zhì)得AE=EF,
∴ 四邊形AEFG是菱形,
故B正確;
∴ GF=EF=AE ,
∵ ∠ABD=45°,EF⊥BD,
∴ BE=EF,
∵ EF=AE,
∴ BE=AE,
∵ ∠GFO=45°, AC⊥BD,
∴ GF=OG ,
∵ BE=GF,GF=OG,
∴ BE=2OG,
故D正確;
∵BE=AE,
∴AD=BE+AE=AE+AE=(1+)AE,
∴tan∠AED=== .
故C錯(cuò)誤.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】法國(guó)數(shù)學(xué)家柯西于1813年在拉格朗日、高斯的基礎(chǔ)上徹底證明了《費(fèi)馬多邊形數(shù)定理》,其主要突破在“五邊形數(shù)”的證明上.如圖為前幾個(gè)“五邊形數(shù)”的對(duì)應(yīng)圖形,請(qǐng)據(jù)此推斷,第10個(gè)“五邊形數(shù)”應(yīng)該為( 。,第2018個(gè)“五邊形數(shù)”的奇偶性為( 。
A. 145;偶數(shù) B. 145;奇數(shù) C. 176;偶數(shù) D. 176;奇數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ ABC中,AB=AC,∠ BAC=90°,直角∠ EPF的頂點(diǎn)P是BC中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)E、F,給出以下四個(gè)結(jié)論:①AE=CF;②△ EPF是等腰直角三角形; ③2S四邊形AEPF=S△ ABC; ④BE+CF=EF.當(dāng)∠ EPF在△ ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E與A、B重合).上述結(jié)論中始終正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明學(xué)習(xí)電學(xué)知識(shí)后,用四個(gè)開關(guān)按鍵(每個(gè)開關(guān)按鍵閉合的可能性相等)、一個(gè)電源和一個(gè)燈泡設(shè)計(jì)了一個(gè)電路圖
(1)若小明設(shè)計(jì)的電路圖如圖1(四個(gè)開關(guān)按鍵都處于打開狀態(tài))如圖所示,求任意閉合一個(gè)開關(guān)按鍵,燈泡能發(fā)光的概率;
(2)若小明設(shè)計(jì)的電路圖如圖2(四個(gè)開關(guān)按鍵都處于打開狀態(tài))如圖所示,求同時(shí)時(shí)閉合其中的兩個(gè)開關(guān)按鍵,燈泡能發(fā)光的概率.(用列表或樹狀圖法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn)在軸的負(fù)半軸上,點(diǎn)在軸的正半軸上,以為斜邊向上作等腰直角,交軸于點(diǎn),.
(1)如圖1,求點(diǎn)的坐標(biāo);
(2)如圖2,動(dòng)點(diǎn)從點(diǎn)出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度沿軸的正半軸運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,連接,設(shè)的面積為,請(qǐng)用含的式子來表示;
(3)如圖3,在(2)的條件下,當(dāng)點(diǎn)在的延長(zhǎng)線上時(shí),點(diǎn)在直線的下方,且,.連接,取的中點(diǎn),連接并延長(zhǎng)交于點(diǎn),連接,當(dāng)時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)準(zhǔn)備進(jìn)一批兩種不同型號(hào)的衣服,已知購(gòu)進(jìn)A種型號(hào)衣服9件,B種型號(hào)衣服10件,則共需1810元;若購(gòu)進(jìn)A種型號(hào)衣服12件,B種型號(hào)衣服8件,共需1880元;已知銷售一件A型號(hào)衣服可獲利18元,銷售一件B型號(hào)衣服可獲利30元,要使在這次銷售中獲利不少于699元,且A型號(hào)衣服不多于28件.
(1)求A、B型號(hào)衣服進(jìn)價(jià)各是多少元?
(2)若已知購(gòu)進(jìn)A型號(hào)衣服是B型號(hào)衣服的2倍還多4件,則商店在這次進(jìn)貨中可有幾種方案并簡(jiǎn)述購(gòu)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,E是等邊三角形ABC的邊AB所在直線上一點(diǎn),D是邊BC所在直線上一點(diǎn),且D與C不重合,若EC=ED.則稱D為點(diǎn)C關(guān)于等邊三角形ABC的反稱點(diǎn),點(diǎn)E稱為反稱中心.
在平面直角坐標(biāo)系xOy中,
(1)已知等邊三角形AOC的頂點(diǎn)C的坐標(biāo)為(2,0),點(diǎn)A在第一象限內(nèi),反稱中心E在直線AO上,反稱點(diǎn)D在直線OC上.
①如圖2,若E為邊AO的中點(diǎn),在圖中作出點(diǎn)C關(guān)于等邊三角形AOC的反稱點(diǎn)D,并直接寫出點(diǎn)D的坐標(biāo):___.
②若AE=2,求點(diǎn)C關(guān)于等邊三角形AOC的反稱點(diǎn)D的坐標(biāo);
(2)若等邊三角形ABC的頂點(diǎn)為B(n,0),C(n+1,0),反稱中心E在直線AB上,反稱點(diǎn)D在直線BC上,且2≤AE<3.請(qǐng)直接寫出點(diǎn)C關(guān)于等邊三角形ABC的反稱點(diǎn)D的橫坐標(biāo)t的取值范圍:P_____(用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線經(jīng)過點(diǎn)A(,0),B(,0),且與y軸相交于點(diǎn)C.
(1)求這條拋物線的表達(dá)式;
(2)求∠ACB的度數(shù);
(3)設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對(duì)稱軸的右側(cè),點(diǎn)E在線段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,M,N分別是邊AD,BC的中點(diǎn),E,F(xiàn)分別是線段BM,CM的中點(diǎn).
(1)求證:△ABM≌△DCM;
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;
(3)當(dāng)四邊形MENF是正方形時(shí),求AD:AB的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com