(1)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象過A(2,0)、B(12,0),且y的最大值為50,求這個二次函數(shù)的解析式;
(2)拋物線頂點P(2,1),且過A(-1,10),求拋物線的解析式.
y=-2(x-2)(x-12)=-2x2+28x-48;y=(x-2)2+1=x2-4x+5.

試題分析:(1)先根據(jù)拋物線的對稱性確定頂點坐標,由于已知拋物線與x軸的兩交點坐標,則可設交點式y(tǒng)=a(x-2)(x-12),然后把頂點坐標代入求出a的值即可;
(2)由于已知頂點坐標,可設頂點式,然后把A點坐標代入求出a的值即可.
試題解析:
解:(1)∵二次函數(shù)的圖象過A(2,0)、B(12,0),
∴拋物線的對稱軸為直線x=7,
∴拋物線的頂點坐標為(7,50),
設拋物線的解析式為y=a(x-2)(x-12),
把(7,50)代入得a×5×(-5)=50,
解得a=-2,
∴二次函數(shù)的解析式為
(2)設拋物線的解析式為y=a(x-2)2+1,
把A(-1,10)代入得9a+1=10,
解得a=1,
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

二次函數(shù)圖象的形狀與y=3x2相同,且它的頂點坐標是,該解析式為             

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線與直線交于點O(0,0),A(,12),點B是拋物線上O,A之間的一個動點,過點B分別作軸、軸的平行線與直線OA交于點C,E.

(1)求拋物線的函數(shù)解析式;
(2)若點C為OA的中點,求BC的長;
(3)以BC,BE為邊構造矩形BCDE,設點D的坐標為(,),求出,之間的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線軸相交于點(﹣1,0)、(3,0),與軸相交于點,點為線段上的動點(不與重合),過點垂直于軸的直線與拋物線及線段分別交于點、,點軸正半軸上,=2,連接、

(1)求拋物線的解析式;
(2)當四邊形是平行四邊形時,求點的坐標;
(3)過點的直線將(2)中的平行四邊形分成面積相等的兩部分,求這條直線的解析式.(不必說明平分平行四邊形面積的理由)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若二次函數(shù)y=ax2+bx+c的x與y的部分對應值如下表:則下列說法錯誤的是(     )
 
A.二次函數(shù)圖像與x軸交點有兩個
B.x≥2時y隨x的增大而增大
C.二次函數(shù)圖像與x軸交點橫坐標一個在-1~0之間,另一個在2~3之間
D.對稱軸為直線x=1.5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)的圖象以為頂點,且過點
(1)求該二次函數(shù)的解析式;
(2)求該二次函數(shù)圖象與坐標軸的交點坐標;

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線(b,c是常數(shù),且c<0)與x軸分別交于點A,B(點A位于點B的左側),與y軸的負半軸交于點C,點A的坐標為(-1,0).

(1)b=    ,點B的橫坐標為    (上述結果均用含c的代數(shù)式表示);
(2)連接BC,過點A作直線AE∥BC,與拋物線交于點E.點D是x軸上一點,其坐標為
(2,0),當C,D,E三點在同一直線上時,求拋物線的解析式;
(3)在(2)的條件下,點P是x軸下方的拋物線上的一動點,連接PB,PC,設所得△PBC的面積為S.
①求S的取值范圍;
②若△PBC的面積S為整數(shù),則這樣的△PBC共有    個.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,點O是原點,矩形OABC的頂點A在x軸的正半軸上,頂點C在y的正半軸上,點B的坐標是(5,3),拋物線經(jīng)過A、C兩點,與x軸的另一個交點是點D,連接BD.

(1)求拋物線的解析式;
(2)點M是拋物線對稱軸上的一點,以M、B、D為頂點的三角形的面積是6,求點M的坐標;
(3)點P從點D出發(fā),以每秒1個單位長度的速度沿D→B勻速運動,同時點Q從點B出發(fā),以每秒1個單位長度的速度沿B→A→D勻速運動,當點P到達點B時,P、Q同時停止運動,設運動的時間為t秒,當t為何值時,以D、P、Q為頂點的三角形是等腰三角形?請直接寫出所有符合條件的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如下圖是一副眼鏡鏡片下半部分輪廓對應的兩條拋物線關于軸對稱.軸,,最低點軸上,高,則右輪廓線所在拋物線的函數(shù)解析式為(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案