如圖,在△ABC中,∠C=90°,AD是∠BAC的平分線,O是AB上一點,以O(shè)A為半徑的⊙O經(jīng)過點D.
(1)求證:BC是⊙O切線;
(2)若BD=5,DC=3,求AC的長.
【考點】切線的判定.
【專題】幾何綜合題.
【分析】(1)要證BC是⊙O的切線,只要連接OD,再證OD⊥BC即可.
(2)過點D作DE⊥AB,根據(jù)角平分線的性質(zhì)可知CD=DE=3,由勾股定理得到BE的長,再通過證明△BDE∽△BAC,根據(jù)相似三角形的性質(zhì)得出AC的長.
【解答】(1)證明:連接OD;
∵AD是∠BAC的平分線,
∴∠1=∠3.(1分)
∵OA=OD,
∴∠1=∠2.
∴∠2=∠3.
∴∥AC.(2分)
∴∠ODB=∠ACB=90°.
∴OD⊥BC.
∴BC是⊙O切線.(3分)
(2)解:過點D作DE⊥AB,
∵AD是∠BAC的平分線,
∴CD=DE=3.
在Rt△BDE中,∠BED=90°,
由勾股定理得:,(4分)
∵∠BED=∠ACB=90°,∠B=∠B,
∴△BDE∽△BAC.(5分)
∴.
∴.
∴AC=6.(6分)
【點評】本題綜合性較強,既考查了切線的判定,要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.同時考查了角平分線的性質(zhì),勾股定理得到BE的長,及相似三角形的性質(zhì).
科目:初中數(shù)學 來源: 題型:
如圖,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.將△ABC繞直角頂點C逆時針旋轉(zhuǎn)60°得△A′B′C,則點B轉(zhuǎn)過的路徑長為( 。
A. B. C. D.π
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
(1)請你求出該班的總?cè)藬?shù),并補全頻數(shù)分布直方圖;
(2)該班班委4人中,1人選修籃球,2人選修足球,1人選修排球,李老師要從這4人中人選2人了解他們對體育選修課的看法,請你用列表或畫樹狀圖的方法,求選出的2人中恰好1人選修籃球,1人選修足球的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖是一個用來盛爆米花的圓錐形紙杯,紙杯開口圓的直徑EF長為10cm,母線OE(OF)長為10cm.在母線OF上的點A處有一塊爆米花殘渣,且FA=2cm,一只螞蟻從杯口的點E處沿圓錐表面爬行到A點,則此螞蟻爬行的最短距離 cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com