已知:如圖,正方形ABCD中,O是BD的中點(diǎn),BE平分∠DBC,交DC于點(diǎn)E,延長BC到點(diǎn)F,使CF=CE,連接DF,交BE的延長線于點(diǎn)G,連接OG.
(1)求證:△BCE≌△DCF;
(2)求證:G是DF中點(diǎn);
(3)若CE=1,求正方形ABCD的面積.

證明:(1)∵正方形ABCD中,BC=DC,∠BCD=90°,
∴∠BCD=∠DCF=90°,
∴∠DCF=90°=∠BCD,
∵在△BCD和△DCF中,
,
∴△BCE≌△DCF(SAS);

(2)∵△BCE≌△DCF,
∴∠1=∠F,
∵∠BCD=90°,
∴∠1+∠2=90°,
∴∠F+∠2=90°,
∵D、G、F三點(diǎn)共線,
∴∠BGF+∠BGD=180°,
∴∠BGD=90°=∠BGF,
∵BE平分∠DBC,
∴∠3=∠2,
∵在△BDG和△BGF中,
,
∴△BDG≌△BGF(ASA),
∴DG=FG,
∴G是DF的中點(diǎn);

(3)∵O是BD的中點(diǎn),G是DF的中點(diǎn),
∴OG=BF,
∵∠BGD=90°,O是BD的中點(diǎn),
∴OG=BD,設(shè)正方形邊長是x,則BF=BC+CF=BC+CE=x+1,
∴BD=x+1,
∵∠BCD=90°,
∴BC2+CD2=BD2,即x2+x2=(x+1)2,
解得x=+1,
∴S正方形ABCD=x2=(+1)2=3+2
分析:(1)根據(jù)正方形的性質(zhì)可以得到∠DCF=90°=∠BCD,根據(jù)SAS即可證得△BCE≌△DCF;
(2)首先證明∠BGD=∠BGF=90°,然后利用ASA即可證明△BDG≌△BGF,從而得到DG=FG,即G是DF中點(diǎn);
(3)根據(jù)(2)的證明可以得到BF=BD,則設(shè)正方形邊長是x,則BD=x+1,在直角△BCD中,利用勾股定理即可得到一個(gè)關(guān)于x的方程求得正方形的邊長,則面積即可求得.
點(diǎn)評(píng):本題考查了正方形的性質(zhì),以及全等三角形的判定與性質(zhì),三角形的中位線定理的性質(zhì),以及勾股定理的應(yīng)用,正確理解定理是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,O正方形ABCD的中心,BE平分∠DBC,交DC于點(diǎn)E,延長BC到點(diǎn)F,使CF=CE精英家教網(wǎng),連接DF,交BE的延長線于點(diǎn)G,連接OG.
(1)求證:△BCE≌△DCF;
(2)OG與BF有什么數(shù)量關(guān)系?證明你的結(jié)論;
(3)若GE•GB=4-2
2
,求正方形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖在正方形OADC中,點(diǎn)C的坐標(biāo)為(0,4),點(diǎn)A的坐標(biāo)為(4,0),CD的延長線交雙曲線y=
32
x
于點(diǎn)B.
(1)求直線AB的解析式;精英家教網(wǎng)
精英家教網(wǎng)
(2)G為x軸的負(fù)半軸上一點(diǎn)連接CG,過G作GE⊥CG交直線AB于E.求證CG=GE;
(3)在(2)的條件下,延長DA交CE的延長線于F,當(dāng)G在x的負(fù)半軸上運(yùn)動(dòng)的過程中,請(qǐng)問
OG+GF
DF
的值是否為定值,若是,請(qǐng)求出其值;若不是,請(qǐng)說明你的理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、已知,如圖:正方形ABCD,將Rt△EFG斜邊EG的中點(diǎn)與點(diǎn)A重合,直角頂點(diǎn)F落在正方形的AB邊上,Rt△EFG的兩直角邊分別交AB、AD邊于P、Q兩點(diǎn),(點(diǎn)P與點(diǎn)F重合),如圖所示:

(1)求證:EP2+GQ2=PQ2;
(2)若將Rt△EFG繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(0°<α≤90°),兩直角邊分別交AB、AD邊于P、Q兩點(diǎn),如圖2所示:判斷四條線段EP、PF、FQ、QG之間是否存在什么確定的相等關(guān)系?若存在,證明你的結(jié)論.若不存在,請(qǐng)說明理由;
(3)若將Rt△EFG繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(90°<α<180°),兩直角邊分別交AB、AD兩邊延長線于P、Q兩點(diǎn),并判斷四條線段EP、PF、FQ、QG之間存在何種確定的相等關(guān)系?按題意完善圖3,請(qǐng)直接寫出你的結(jié)論(不用證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,正方形ABCD的邊長為2a,H是以BC為直徑的半圓O上一點(diǎn),過H與圓O相切的直線交AB精英家教網(wǎng)于E,交CD于F.
(1)當(dāng)點(diǎn)H在半圓上移動(dòng)時(shí),切線EF在AB、CD上的兩個(gè)交點(diǎn)也分別在AB、CD上移動(dòng)(E、A不重合,F(xiàn)、D不重合),試問:四邊形AEFD的周長是否也在變化?證明你的結(jié)論;
(2)設(shè)△BOE的面積為S1,△COF的面積為S2,正方形ABCD的面積為S,且S1+S2=
1348
S,求BE與CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,正方形紙片ABCD的邊長是4,點(diǎn)M、N分別在兩邊AB和CD上(其中點(diǎn)N不與點(diǎn)C重合),沿直線MN折疊該紙片,點(diǎn)B恰好落在AD邊上點(diǎn)E處.
(1)設(shè)AE=x,四邊形AMND的面積為 S,求 S關(guān)于x 的函數(shù)解析式,并指明該函數(shù)的定義域;
(2)當(dāng)AM為何值時(shí),四邊形AMND的面積最大?最大值是多少?
(3)點(diǎn)M能是AB邊上任意一點(diǎn)嗎?請(qǐng)求出AM的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案