【題目】如圖,△ABC是等邊三角形,ADBC邊上的中線,點EAC上,∠CDE25°,現(xiàn)將△CDE沿直線DE翻折得到△FDE,連接BF,則∠BFE的度數(shù)是_____.

【答案】85°

【解析】

根據(jù)等邊三角形的性質(zhì)可得∠C=60°,根據(jù)等腰三角形三線合一的性質(zhì)可得BDCD,根據(jù)翻折變換的性質(zhì)可得CDDF,∠DFE=∠C,∠CDE=∠FDE,從而得到BDDF,根據(jù)等邊對等角可得∠DBF=∠DFB,然后根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得∠CDF=∠DBF+∠DFB,從而求出∠DFB,再根據(jù)∠BFE=∠DFB+∠DFE計算即可得解.

解:∵△ABC是等邊三角形,

∴∠C=60°,

ADBC邊上的中線,

BDCD,

∵△CDE沿直線DE翻折得到△FDE

CDDF,∠DFE=∠C=60°,∠CDE=∠FDE=25°,

BDDF

∴∠DBF=∠DFB,

由三角形的外角性質(zhì)得,∠CDF=∠DBF+∠DFB=2∠DFB,

∴∠DFBCDF=∠CDE=25°,

∴∠BFE=∠DFB+∠DFE=25°+60°=85°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】觀察下面三行數(shù)

第①行的第個數(shù)可表示為 ;

第②③行數(shù)與第①行數(shù)分別有什么關系?

取每行的第個數(shù),從上到下依次把這三個數(shù)記為,當時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O的直徑AB=2,弦AC與弦BD交于點E.且ODAC,垂足為點F.

(1)如圖1,如果AC=BD,求弦AC的長;

(2)如圖2,如果E為弦BD的中點,求∠ABD的余切值;

(3)聯(lián)結BC、CD、DA,如果BC是⊙O的內(nèi)接正n邊形的一邊,CD是⊙O的內(nèi)接正(n+4)邊形的一邊,求ACD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+2x+cx軸交于A(﹣1,0)B(3,0)兩點,與y軸交于點C,點D是該拋物線的頂點.

(1)求拋物線的解析式和直線AC的解析式;

(2)請在y軸上找一點M,使BDM的周長最小,求出點M的坐標;

(3)試探究:在拋物線上是否存在點P,使以點A,P,C為頂點,AC為直角邊的三角形是直角三角形?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,AB邊上有一動點P,連接PD,線段PD繞點P順時針旋轉90°后,得到線段PE,且PE交BC于F,連接DF,過點E作EQAB的延長線于點Q.

(1)求線段PQ的長;

(2)問:點P在何處時,PFD∽△BFP,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學準備組織七年級160名學生參加社會實踐活動,租用35座和45座兩種客車共四輛,每種客車至少租1輛,可以坐不滿.

1)參加本次活動至少需幾輛45座客車?

2)如果35座客車的租金為每輛300元,45座客車的租金為每輛400元,要想使全部租車的費用不超過1550元,則有幾種租車的方案?哪種方案最省錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了解全校學生到校上學的方式,在全校隨機抽取了若干名學生進行問卷調(diào)查.問卷給出了五種上學方式供學生選擇,每人只能選一項,且不能不選.同時把調(diào)查得到的結果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整).請根據(jù)圖中提供的信息解答下列問題:

1)在這次調(diào)查中,一共抽取了多少名學生?

2)通過計算補全條形統(tǒng)計圖;

3)在扇形統(tǒng)計圖中,公交車部分所對應的圓心角是多少度?

4)若全校有1600名學生,估計該校乘坐私家車上學的學生約有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CABC,垂足為C,AC2cm,BC6cm,射線BMBQ,垂足為B,動點PC點出發(fā)以1cm/s的速度沿射線CQ運動,點N為射線BM上一動點,滿足PNAB,隨著P點運動而運動,當點P運動_____秒時,△BCA與點P、NB為頂點的三角形全等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1=2,∠A=D,說明∠F與∠C相等的理由.

解:∵∠1=2( 已知 ),∠2=4 ( ),

∴∠1=4( 等量代換 )

FBEC( ),

∴∠3=C( 兩直線平行,同位角相等 )

∵∠A=D( ),

EDAC( ),

∴∠F=3 ( )

查看答案和解析>>

同步練習冊答案