【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點(diǎn)A為圓心,BC長為半徑畫弧交AB于點(diǎn)D,分別以點(diǎn)A、D為圓心,AB長為半徑畫弧,兩弧交于點(diǎn)E,連接AE,DE,則∠EAD的余弦值是(
A.
B.
C.
D.

【答案】B
【解析】解:如圖所示:設(shè)BC=x, ∵在Rt△ABC中,∠B=90°,∠A=30°,
∴AC=2BC=2x,AB= BC= x,
根據(jù)題意得:AD=BC=x,AE=DE=AB= x,
作EM⊥AD于M,則AM= AD= x,
在Rt△AEM中,cos∠EAD= = = ;
故選:B.

設(shè)BC=x,由含30°角的直角三角形的性質(zhì)得出AC=2BC=2x,求出AB= BC= x,根據(jù)題意得出AD=BC=x,AE=DE=AB= x,作EM⊥AD于M,由等腰三角形的性質(zhì)得出AM= AD= x,在Rt△AEM中,由三角函數(shù)的定義即可得出結(jié)果.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(2k+1)x+k2﹣2=0的兩根為x1和x2 , 且(x1﹣2)(x1﹣x2)=0,則k的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=BC,點(diǎn)D在AB的延長線上.
(1)利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(保留作圖痕跡,不寫作法). ①作∠CBD的平分線BM;
②作邊BC上的中線AE,并延長AE交BM于點(diǎn)F.
(2)由(1)得:BF與邊AC的位置關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABC中,BE平分∠ABCAC邊于點(diǎn)E,過點(diǎn)EDEBCAB于點(diǎn)D,

(1)求證:△BDE為等腰三角形;

(2)若點(diǎn)DAB中點(diǎn),AB=6,求線段BC的長;

(3)在圖2條件下,若∠BAC=60°,動點(diǎn)P從點(diǎn)B出發(fā),以每秒1個單位的速度沿射線BE運(yùn)動,請直接寫出圖3當(dāng)△ABP為等腰三角形時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】abc是直角三角形的三條邊長,斜邊c上的高的長是h,給出下列結(jié)論

a2b2c2的長為邊的三條線段能組成一個三角形

, , 的長為邊的三條線段能組成一個三角形

a+b,c+h,h的長為邊的三條線段能組成直角三角形

, , 的長為邊的三條線段能組成直角三角形

其中所有正確結(jié)論的序號為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD和BE是高,∠ABE=45°,點(diǎn)F是AB的中點(diǎn),AD與FE、BE分別交于點(diǎn)G、H,∠CBE=∠BAD.有下列結(jié)論:①FD=FE;②AH=2CD;③BCAD= AE2;④SABC=4SADF . 其中正確的有(
A.1個
B.2 個
C.3 個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=2x2﹣2 x+1與坐標(biāo)軸的交點(diǎn)個數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個頂點(diǎn)的坐標(biāo)分別為A(-4,1),B(-3,3),C(-1,2).

(1)作出△ABC關(guān)于y軸對稱的△A′B′C′,并寫出△A′B′C′三個頂點(diǎn)的坐標(biāo).

(2)在x軸上畫出點(diǎn)P,使PA+PC最。ú粚懽鞣,保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,花果山上有兩只猴子在一棵樹CD上的點(diǎn)B處,且BC=5m,它們都要到A處吃東西,其中一只猴子甲沿樹爬下走到離樹10m處的池塘A處,另一只猴子乙先爬到樹頂D處后再沿纜繩DA線段滑到A處.已知兩只猴子所經(jīng)過的路程相等,設(shè)BDxm

1)請用含有x整式表示線段AD的長為______m

2)求這棵樹高有多少米?

查看答案和解析>>

同步練習(xí)冊答案