精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系xOy中,直線y=k1x+b交x軸于點A(﹣3,0),交y軸于點B(0,2),并與y= 的圖象在第一象限交于點C,CD⊥x軸,垂足為D,OB是△ACD的中位線.

(1)求一次函數與反比例函數的解析式;
(2)若點C′是點C關于y軸的對稱點,請求出△ABC′的面積.

【答案】
(1)

解:∵直線y=k1x+b交x軸于點A(﹣3,0),交y軸于點B(0,2),

解得

∴一次函數的解析式為y= x+2.

∵OB是△ACD的中位線,OA=3,OB=2,∴OD=3,DC=4.

∴C(3,4).

∵點C在雙曲線y= 上,

∴k2=3×4=12.

∴反比例函數的解析式為y=


(2)

解:∵點C′是點C(3,4)關于y軸的對稱點,

∴C′(﹣3,4).

∴AC′⊥AO.

∴SABC′=S梯形AOBC′﹣SABO= (2+4)×3﹣ 3×2=6.


【解析】(1)根據直線y=k1x+b交x軸于點A(﹣3,0),交y軸于點B(0,2),代入解析式,求出k1和b的值,從而得出一次函數的解析式;再根據OB是△ACD的中位線,得出點C的坐標,最后代入雙曲線y= ,即可求出反比例函數的解析式.(2)根據點C′是點C(3,4)關于y軸的對稱點,求出C′的坐標,從而得出AC′⊥AO,最后根據SABC′=S梯形AOBC′﹣SABO , 代入計算即可.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,⊙O的直徑AB=6,AD、BC是⊙O的兩條切線,AD=2,BC=
(1)求OD、OC的長;
(2)求證:△DOC∽△OBC;
(3)求證:CD是⊙O切線.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,點E是AD的中點,∠EBC的平分線交CD于點F,將△DEF沿EF折疊,點D恰好落在BE上M點處,延長BC、EF交于點N.有下列四個結論:
①DF=CF;
②BF⊥EN;
③△BEN是等邊三角形;
④SBEF=3SDEF
其中,將正確結論的序號全部選對的是( 。

A.①②③
B.①②④
C.②③④
D.①②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABO中,OA=OB,C是邊AB的中點,以O為圓心的圓過點C,且與OA交于點E,與OB交于點F,連接CE,CF.
(1)求證:AB與⊙O相切.
(2)若∠AOB=∠ECF,試判斷四邊形OECF的形狀,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在方格紙中,每個小方格都是邊長為1cm的正方形,△ABC的三個頂點都在格點上,將△ABC繞點O逆時針旋轉90°后得到△A′B′C′(其中A、B、C的對應點分別為A′,B′,C′,則點B在旋轉過程中所經過的路線的長是cm.(結果保留π)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A(a,6)是第一象限內正比例函數y=3x的圖象上的一點,AB⊥x軸,交直線OBB點,三角形OAB的面積為5,求直線OB所對應的函數表達式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某地植物園從正門到側門有一條小路,甲徒步從正門出發(fā)勻速走向側門,乙與甲同時出發(fā),騎自行車從側門勻速前往正門到達正門后休息0.2小時,然后按原路原速勻速返回側門,圖中折線分別表示甲、乙到側門的距離y(km)與出發(fā)時間x(h)之間的函數關系圖象,根據圖象信息解答下列問題:

(1)求甲到側門的距離yx之間的函數關系式;

(2)求甲、乙第一次相遇時到側門的距離.

(3)求甲、乙第二次相遇的時間.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,為測量江兩岸碼頭B、D之間的距離,從山坡上高度為50米的A處測得碼頭B的仰角∠EAB為15°,碼頭D的仰角∠EAD為45°,點C在線段BD的延長線上,AC⊥BC,垂足為C,求碼頭B、D的距離(結果保留整數).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】填空,完成下列說理過程:

O是直線AB上一點,∠COD = 90°,OE平分∠BOC.

(1)如圖1,若∠ AOC = 50°,求∠DOE的度數;

解:∵O是直線AB上一點,

∴∠AOC +BOC =180°.

∵∠AOC =50°,

∴∠BOC =130°.

OE平分∠BOC(已知)

∴∠COE =BOC ( ).

∴∠COE = °.

∵∠COD = 90°,∠DOE = ,

∴∠DOE = °.

(2)將圖1中∠ COD按順時針方向轉至圖2所示的位置,OE仍然平分∠BOC.試猜想∠AOC與∠DOE的度數之間的關系為: .

查看答案和解析>>

同步練習冊答案