【題目】填空,完成下列說理過程:
O是直線AB上一點,∠COD = 90°,OE平分∠BOC.
(1)如圖1,若∠ AOC = 50°,求∠DOE的度數(shù);
解:∵O是直線AB上一點,
∴∠AOC +∠BOC =180°.
∵∠AOC =50°,
∴∠BOC =130°.
∵OE平分∠BOC(已知),
∴∠COE =∠BOC ( ).
∴∠COE = °.
∵∠COD = 90°,∠DOE =∠ ∠ ,
∴∠DOE = °.
(2)將圖1中∠ COD按順時針方向轉(zhuǎn)至圖2所示的位置,OE仍然平分∠BOC.試猜想∠AOC與∠DOE的度數(shù)之間的關(guān)系為: .
【答案】(1)見解析;(2)∠AOC= 2∠DOE.
【解析】
(1)根據(jù)角平分線的性質(zhì),直角的性質(zhì)進(jìn)行解題,(2)根據(jù)∠AOB=180°,∠DOC=90°即可解題.
(1)∵O是直線AB上一點,
∴180°.
∵=50°,
∴=130°.
∵OE平分(已知),
∴= (角平分線定義)
∴= 65 °.
∵= 90°,∠ DOE =∠ ∠ ,
∴= 25 °.
(2)∠DOE = (或 = 2∠DOE) ,
理由:
由題可知,∠AOC+2∠COE=180°,
∠COE+∠DOE=90°,
∴∠AOC+2∠COE=2(∠COE+∠DOE),
整理得:= 2∠DOE
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=k1x+b交x軸于點A(﹣3,0),交y軸于點B(0,2),并與y= 的圖象在第一象限交于點C,CD⊥x軸,垂足為D,OB是△ACD的中位線.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)若點C′是點C關(guān)于y軸的對稱點,請求出△ABC′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,垂足為D,點E在AB上,EF⊥BC,垂足為F.
(1)AD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校計劃購買甲、乙兩種圖書作為“校園讀書節(jié)”的獎品,已知甲種圖書的單價比乙種圖書的單價多10元,且購買3本甲種圖書和2本乙種圖書共需花費130元
(1)甲、乙兩種圖書的單價分別為多少元?
(2)學(xué)校計劃購買這兩種圖書共50本,且投入總經(jīng)費不超過1200元,則最多可以購買甲種圖書多少本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D在AB上,在下列四個條件中:①∠ACD=∠B;②∠ADC=∠ACB;③AC2=ADAB;④ABCD=ADCB,能滿足△ADC與△ACB相似的條件是( )
A.①、②、③
B.①、③、④
C.②、③、④
D.①、②、④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1) ﹣3 ×( ﹣ )
(2) ﹣
(3)sin230°+2sin60°+tan45°﹣tan60°+cos230°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】去年暑假,某旅行社組織了一個中學(xué)生“夏令營”活動,共有253名中學(xué)生報名參加,打算選租甲、乙兩種客車載客到指定地點.甲客車2輛、乙客車1輛可坐110人,甲客車3輛、乙客車2輛可坐180人.旅行前,旅行社每輛車安排了一名帶隊老師,因此一共安排了7名帶隊老師.
(1)甲、乙兩種客車各可坐多少人?
(2)請幫助旅行社設(shè)計租車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝廠計劃購進(jìn)某種布料做服裝,已知米布料能做件上衣,米布料能做件褲子.
(1)一件上衣的用料是一條褲子用料的多少倍;
(2)這種布料是按匹購買的,每匹布料是將這種厚度為布料卷在直徑為的圓柱形軸上,卷完布后的圓柱直徑為D=20cm,其形狀和尺寸如圖所示,為使一匹布料所做的上衣和褲子剛好配成套,應(yīng)分別用多少米的布料生產(chǎn)上衣和褲子(π取3)?
(3)在(2)的條件下,一件上衣用料1米,服裝廠要生產(chǎn)1000套,則需采購這樣的布料多少匹?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠C=90°,
(1)若a=4,b=3,則c=_______;
(2)若a=24,c=30,則b=_______;
(3)若BC=11,AB=61,則AC=_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com