【題目】如圖,已知是⊙的直徑,,是圓的兩條切線,,為切點(diǎn),過(guò)圓上一點(diǎn)作⊙的切線,分別交,于點(diǎn),連接.,則等于( )

A. 0.5 B. 1

C. D.

【答案】C

【解析】

連接OM、OC,根據(jù)圓周角定理可得∠AOC=2∠ABC=60°,由切線長(zhǎng)定理可得MA=MC且∠MAO=∠MCO=90°,利用HL證明Rt△AOM≌Rt△COM,即可得∠AOM=∠COM=∠AOC=30°,在Rt△AOM中求得AM的長(zhǎng)即可.

連接OM,OC,

∵∠ABC=30°,

∴∠AOC=2∠ABC=60°,

∵M(jìn)A,MC分別為⊙O的切線,

∴MA=MC,且∠MAO=∠MCO=90°,

Rt△AOMRt△COM中,

MA=MC,OM=OM,

∴Rt△AOM≌Rt△COM(HL),

∴∠AOM=∠COM=∠AOC=30°,

Rt△AOM中,OA=AB=1,∠AOM=30°,

∴tan30°=,即 ,

解得:AM=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,的中點(diǎn),是線段延長(zhǎng)線上一點(diǎn),過(guò)點(diǎn),與線段的延長(zhǎng)線交于點(diǎn),連結(jié)、

求證:;

,試判斷四邊形是什么樣的四邊形,并證明你的結(jié)論;

的中點(diǎn),求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將圖1中的矩形ABCD沿對(duì)角線AC剪開(kāi),再把△ABC沿著AD方向平移,得到圖2中的△ABC′.

1)在圖2中,除△ADC與△CBA′全等外,請(qǐng)寫(xiě)出其他2組全等三角形;      ;

2)請(qǐng)選擇(1)中的一組全等三角形加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線與x軸交兩點(diǎn)A(﹣1,0),B(3,0),過(guò)點(diǎn)A作直線AC與拋物線交于C點(diǎn),它的坐標(biāo)為(2,﹣3).

(1)求拋物線及直線AC的解析式;

(2)P是線段AC上的一個(gè)動(dòng)點(diǎn),(不與A,C重合),過(guò)P點(diǎn)作y軸的平行線交拋物線于E點(diǎn),點(diǎn)E與點(diǎn)A、C圍成三角形,求出ACE面積的最大值;

(3)點(diǎn)G為拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使A、C、F、G這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,直接寫(xiě)出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,FCD上一點(diǎn),EBF上一點(diǎn),連接AEAC、DE.若AB=AC,AD=AE,∠BAC=DAE=70°,AE平分∠BAC,則下列結(jié)論中:①ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正確的個(gè)數(shù)有( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AB⊙O的直徑,點(diǎn)C、D⊙O上,且BC=6cm,AC=8cm∠ABD=45°

1)求BD的長(zhǎng);

2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一個(gè)邊長(zhǎng)不定的正方形ABCD,它的兩個(gè)相對(duì)的頂點(diǎn)AC分別在邊長(zhǎng)為1的正六邊形一組平行的對(duì)邊上,另外兩個(gè)頂點(diǎn)B,D在正六邊形內(nèi)部(包括邊界),則正方形邊長(zhǎng)a的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象與軸交于點(diǎn)、,且,與軸的正半軸的交點(diǎn)在的下方.下列結(jié)論:①;②;③;④.其中正確結(jié)論的個(gè)數(shù)是( )個(gè).

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形中,對(duì)角線平分,,,則的度數(shù)為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案