化簡求值:
(1)2a-5b+3a+b;
(2)2(3x2-2xy)-4(2x2-xy-1);
(3)5(3a2b-ab2)-4(-3ab2+2a2b),其中a=-2,b=3;
(4)已知a、b互為相反數(shù),c、d互為倒數(shù),m是絕對值等于3的負數(shù),求m2+(cd+a+b)×m+(cd)2008
的值.
(5)已知a+b=4,ab=-2,求代數(shù)式(4a-3b-2ab)-(a-6b-ab)的值.
解:(1)2a-5b+3a+b=(2+3)a+(-5+1)b=5a-4b;
(2)2(3x2-2xy)-4(2x2-xy-1)
=6x2-4xy-8x2+4xy+4
=-2x2+4;
(3)5(3a2b-ab2)-4(-3ab2+2a2b)
=15a2b-5ab2+12ab2-8a2b
=7a2b+7ab2
當a=-2,b=3時,
原式=7a2b+7ab2=7×(-2)2×3+7×(-2)×32=7×4×3+7×(-2)×9
=84-126
=-42;
(4)根據(jù)題意,a+b=0、cd=1、m=-3,
∴m2+(cd+a+b)×m+(cd)2008
=(-3)2+(1+0)×(-3)+12008
=9-3+1
=7;
(5)(4a-3b-2ab)-(a-6b-ab)
=4a-3b-2ab-a+6b+ab
=3(a+b)-ab,
當a+b=4,ab=-2時,
原式=3(a+b)-ab
=3×4-(-2)
=12+2
=14.
分析:(1)根據(jù)合并同類項法則只把系數(shù)相加減,字母與字母的次數(shù)不變解答;
(2)先去掉括號,再合并同類項;
(3)先去括號化簡后,再代入求值;
(4)先根據(jù)題意得到a+b=0、cd=1、m=-3,然后代入算式計算即可;
(5)先去括號化簡后再代入求值.
點評:本題主要考查整式的求值,先化簡再代入求值使運算更加簡便.