【題目】如圖,已知平行四邊形OBDC的對角線相交于點E,其中O(0,0),B(3,4),C(m,0),反比例函數(shù)y=(k≠0)的圖象經(jīng)過點B.
(1)求反比例函數(shù)的解析式;
(2)若點E恰好落在反比例函數(shù)y=上,求平行四邊形OBDC的面積.
【答案】(1)y=;(2)36;
【解析】
(1)把點B的坐標(biāo)代入反比例解析式求得k值,即可求得反比例函數(shù)的解析式;(2)根據(jù)點B(3,4)、C(m,0)的坐標(biāo)求得邊BC的中點E坐標(biāo)為(,2),將點E的坐標(biāo)代入反比例函數(shù)的解析式求得m的值,根據(jù)平行四邊形的面積公式即可求解.
(1)把B坐標(biāo)代入反比例解析式得:k=12,
則反比例函數(shù)解析式為y=;
(2)∵B(3,4),C(m,0),
∴邊BC的中點E坐標(biāo)為(,2),
將點E的坐標(biāo)代入反比例函數(shù)得2=,
解得:m=9,
則平行四邊形OBCD的面積=9×4=36.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=x2﹣4與y軸的交點坐標(biāo)是_____,與x軸的交點坐標(biāo)是_____,簡要步驟:_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,于點D,點E是直線AC上一動點,連接DE,過點D作,交直線BC于點F.
探究發(fā)現(xiàn):
如圖1,若,點E在線段AC上,則______;
數(shù)學(xué)思考:
如圖2,若點E在線段AC上,則______用含m,n的代數(shù)式表示;
當(dāng)點E在直線AC上運動時,中的結(jié)論是否任然成立?請僅就圖3的情形給出證明;
拓展應(yīng)用:若,,,請直接寫出CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在△ABC中,AC=BC,∠ACB=90°,直線CP不過點A,B,且不平分∠ACB,點B關(guān)于直線CP的對稱點為E,直線AE交直線CP于點F.
(1)如圖1,直線CP與線段AB相交,若∠PCB=25°,求∠CAF的度數(shù);
(2)如圖1,當(dāng)直線CP繞點C旋轉(zhuǎn)時,記∠PCB=α(0°<α<90°,且α≠45°).
①∠FEB的大小是否改變,若不變,求出∠FEB的度數(shù);若改變,請用含α的式子表示).
②找出線段AF,EF,BC的數(shù)量關(guān)系,并給出證明.
(3)如圖2,當(dāng)直線CP在△ABC外側(cè),且0°<∠ACP<45°時.若BC=5,EF=8,求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC中點,兩邊PE、PF分別交AB、AC于點E、F,給出下列四個結(jié)論:
①AE=CF;
②△EPF是等腰直角三角形;
③EF=AB;
④,當(dāng)∠EPF在△ABC內(nèi)繞頂點P旋轉(zhuǎn)時(點E不與A、B重合),上述結(jié)論中始終正確的有________(把你認(rèn)為正確的結(jié)論的序號都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC,BD相交于點O,E、F分別是OA,OC的中點.
(1)求證:BE=DF;
(2)在不添加任何輔助線的情況下寫出圖中的所有全等三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線: .
(1)求拋物線的頂點坐標(biāo).
(2)若直線經(jīng)過(2,0)點且與軸垂直,直線經(jīng)過拋物線的頂點與坐標(biāo)原點,且與的交點P在拋物線上.求拋物線的表達式.
(3)已知點A(0,2),點A關(guān)于軸的對稱點為點B.拋物線與線段AB恰有一個公共點,結(jié)合函數(shù)圖象寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A是反比例函數(shù)y=(x<0)的圖象上的一點,過點A作平行四邊形ABCD,使點B、C在x軸上,點D在y軸上.已知平行四邊形ABCD的面積為12,則k的值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com