【題目】在平面直角坐標系xOy中,點A(t,0),B(t+2,0),C(n,1),若射線OC上存在點P,使得△ABP是以AB為腰的等腰三角形,就稱點P為線段AB關于射線OC的等腰點.
(1)如圖,t=0,
①若n=0,則線段AB關于射線OC的等腰點的坐標是 ;
②若n<0,且線段AB關于射線OC的等腰點的縱坐標小于1,求n的取值范圍;
(2)若n=,且射線OC上只存在一個線段AB關于射線OC的等腰點,則t的取值范圍是 .
【答案】(1)①(0,2) ② (2)﹣4<t≤﹣2或t=0或﹣2<t≤
【解析】
(1)①根據(jù)線段AB關于射線OC的等腰點的定義可知OP=AB=2,由此即可解決問題.
②如圖2中,當OP=AB時,作PH⊥x軸于H.求出點P的橫坐標,利用圖象法即可解決問題.
(2)如圖3﹣1中,作CH⊥y軸于H.分別以A,B為圓心,AB為半徑作⊙A,⊙B.首先證明∠COH=30°,由射線OC上只存在一個線段AB關于射線OC的等腰點,推出射線OC與⊙A,⊙B只有一個交點,求出幾種特殊位置t的值,利用數(shù)形結合的思想解決問題即可.
解:(1)①如圖1中,由題意A(0,0),B(2,0),C(0,1),
∵點P是線段AB關于射線OC的等腰點,
∴OP=AB=2,
∴P(0,2).
故答案為(0,2).
②如圖2中,當OP=AB時,作PH⊥x軸于H.
在Rt△POH中,∵PH=OC=1,OP=AB=2
∴OH==,
觀察圖象可知:若n<0,且線段AB關于射線OC的等腰點的縱坐標小于1時,n<﹣.
(2)如圖3﹣1中,作CH⊥y軸于H.分別以A,B為圓心,AB為半徑作⊙A,⊙B.
由題意C(,1),
∴CH=,OH=1,
∴tan∠COH==,
∴∠COH=30°,
當⊙B經(jīng)過原點時,B(﹣2,0),此時t=﹣4,
∵射線OC上只存在一個線段AB關于射線OC的等腰點,
∴射線OC與⊙A,⊙B只有一個交點,觀察圖象可知當﹣4<t≤﹣2時,滿足條件,
如圖3﹣2中,當點A在原點時,∵∠POB=60°,此時兩圓的交點P在射線OC上,滿足條件,此時t=0,
如圖3﹣3中,當⊙B與OC相切于P時,連接BP.
∴OC是⊙B的切線,
∴OP⊥BP,
∴∠OPB=90°,
∵BP=2,∠POB=60°,
∴OB==,此時t=﹣2,
如圖3﹣4中,當⊙A與OC相切時,同法可得OA=,此時t=
觀察圖形可知,滿足條件的t的值為:﹣2<t≤,
綜上所述,滿足條件t的值為﹣4<t≤﹣2或t=0或﹣2<t≤.
故答案為:﹣4<t≤﹣2或t=0或﹣2<t≤.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線與軸交于點,與軸交于點,拋物線經(jīng)過點、.
(1)求、滿足的關系式及的值.
(2)當時,若的函數(shù)值隨的增大而增大,求的取值范圍.
(3)如圖,當時,在拋物線上是否存在點,使的面積為1?若存在,請求出符合條件的所有點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,是的平分線,是射線上一點,.動點從點出發(fā),以的速度沿水平向左作勻速運動,與此同時,動點從點出發(fā),也以的速度沿豎直向上作勻速運動.連接,交于點.經(jīng)過、、三點作圓,交于點,連接、.設運動時間為,其中.
(1)求的值;
(2)是否存在實數(shù),使得線段的長度最大?若存在,求出的值;若不存在,說明理由.
(3)求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,滑翔運動員在空中測量某寺院標志性高塔“云端塔”的高度,空中的點P距水平地面BE的距離為200米,從點P觀測塔頂A的俯角為33°,以相同高度繼續(xù)向前飛行120米到達點C,在C處觀測點A的俯角是60°,求這座塔AB的高度(結果精確到1米).(參考數(shù)據(jù):sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,∠ABC=60°,∠BAD的平分線交CD于點E,交BC的延長線于點F,連接DF.
(1)求證:△ABF是等邊三角形;
(2)若∠CDF=45°,CF=2,求AB的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,點. 沿直線折疊矩形,使點落在邊上,與點重合.分別以,所在的直線為軸,軸建立平面直角坐標系,拋物線經(jīng)過兩點.
(1)求及點的坐標;
(2)一動點從點出發(fā),沿以每秒個單位長的速度向點運動, 同時動點從點出發(fā),沿以每秒個單位長的速度向點運動, 當點運動到點時,兩點同時停止運動.設運動時間為秒,當為何值時,以,,為頂點的三角形與相似?
(3)點在拋物線對稱軸上,點在拋物線上,是否存在這樣的點與點 N,使以,,, 為頂點的四邊形是平行四邊形?若存在,請直接寫出點與點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知圓O的直徑AB垂直于弦CD于點E,連接CO并延長交AD于點F,且CF⊥AD.
(1)證明:點E是OB的中點;
(2)若AB=8,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形的對角線相交于點按下列步驟作圖:①以點為圓心,任意長為半徑作弧,分別交于點;②以點為圓心,長為半徑作弧,交于點;③點為圓心,以長為半徑作弧,在內(nèi)部交②中所作的圓弧于點;④過點作射線交于點.,四邊形的面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】快車和慢車分別從市和市兩地同時出發(fā),勻速行駛,先相向而行,慢車到達市后停止行駛,快車到達市后,立即按原路原速度返回市(調(diào)頭時間忽略不計),結果與慢車同時到達市.快、慢兩車距市的路程、(單位:)與出發(fā)時間(單位:)之間的函數(shù)圖像如圖所示.
(1)市和市之間的路程是________,圖中____________;
(2)請求出與之間的函數(shù)關系式;
(3)快車與慢車迎面相遇以后,請直接寫出經(jīng)過多長時間兩車相距?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com