【題目】已知點(diǎn)P(2a﹣12,1﹣a)位于第三象限,點(diǎn)Q(x,y)位于第二象限且是由點(diǎn)P向上平移一定單位長(zhǎng)度得到的.

(1)若點(diǎn)P的縱坐標(biāo)為﹣3,試求出a的值;

(2)在(1)題的條件下,試求出符合條件的一個(gè)點(diǎn)Q的坐標(biāo);

(3)若點(diǎn)P的橫、縱坐標(biāo)都是整數(shù),試求出a的值以及線段PQ長(zhǎng)度的取值范圍.

【答案】(1)4;(2)(﹣4,1);(3)當(dāng)a=2時(shí),1﹣a=﹣1,所以PQ1;當(dāng)a=3時(shí),1﹣a=﹣2,所以PQ2;當(dāng)a=4時(shí),1﹣a=﹣3,所以PQ3;當(dāng)a=5時(shí),1﹣a=﹣4,所以PQ4.

【解析】

試題(1)點(diǎn)P的縱坐標(biāo)為﹣3,即1﹣a=﹣3;解可得a的值;

(2)根據(jù)題意:由a=4得:2a﹣12=﹣4;進(jìn)而根據(jù)又點(diǎn)Qxy)位于第二象限,所以y>0;取符合條件的值,可得Q的坐標(biāo);

(3)根據(jù)點(diǎn)P(2a﹣12,1﹣a)位于第三象限,且橫、縱坐標(biāo)都是整數(shù),可得;

求其整數(shù)解可得a的值以及線段PQ長(zhǎng)度的取值范圍.

試題解析:解:(1)1﹣a=﹣3,a=4.

(2)由a=4得:2a﹣12=2×4﹣12=﹣4,又點(diǎn)Qx,y)位于第二象限,所以y>0;

y=1,得點(diǎn)Q的坐標(biāo)為(﹣4,1).

(3)因?yàn)辄c(diǎn)P(2a﹣12,1﹣a)位于第三象限,所以,解得:1<a<6.

因?yàn)辄c(diǎn)P的橫、縱坐標(biāo)都是整數(shù),所以a=2345;

當(dāng)a=2時(shí),1﹣a=﹣1,所以PQ>1;

當(dāng)a=3時(shí),1﹣a=﹣2,所以PQ>2;

當(dāng)a=4時(shí),1﹣a=﹣3,所以PQ>3;

當(dāng)a=5時(shí),1﹣a=﹣4,所以PQ>4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,BC=3cm,AC=4cm,D是AB的中點(diǎn),若以點(diǎn)C為圓心,以3cm長(zhǎng)為半徑作⊙C,則下列選項(xiàng)中的點(diǎn)在⊙C外的是(

A.點(diǎn)A
B.點(diǎn)B
C.點(diǎn)C
D.點(diǎn)D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一樓房AB后有一假山,其坡度為i=1: ,山坡坡面上E點(diǎn)處有一休息亭,測(cè)得假山坡腳C與樓房水平距離BC=25米,與亭子距離CE=20米,小麗從樓房頂測(cè)得E點(diǎn)的俯角為45°,求樓房AB的高.(注:坡度i是指坡面的鉛直高度與水平寬度的比)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1∥l2 , 若∠1=140°,∠2=70°,則∠3的度數(shù)是(
A.70°
B.80°
C.65°
D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,若M=a+b﹣c,N=4a﹣2b+c,P=2a﹣b.則M,N,P中,值小于0的數(shù)有(
A.3個(gè)
B.2個(gè)
C.1個(gè)
D.0個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】摩拜單車公司調(diào)查無錫市民對(duì)其產(chǎn)品的了解情況,隨機(jī)抽取部分市民進(jìn)行問卷,結(jié)果分非常了解、比較了解一般了解、不了解四種類型,分別記為、、.根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.

1)本次問卷共隨機(jī)調(diào)查了 名市民,扇形統(tǒng)計(jì)圖中 .

2)請(qǐng)根據(jù)數(shù)據(jù)信息補(bǔ)全條形統(tǒng)計(jì)圖.

3扇形統(tǒng)計(jì)圖中“D類型所對(duì)應(yīng)的圓心角的度數(shù)是 .

4從這次接受調(diào)查的市民中隨機(jī)抽查一個(gè),恰好是不了解的概率是 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過對(duì)角線BD上一點(diǎn)P,作EFBC,HGAB,若四邊形AEPH和四邊形CFPG的面積分另為S1和S2,則S1與S2的大小關(guān)系為( 。

AS1=S2 BS1>S2 CS1<S2 D不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將數(shù)1個(gè)1,2個(gè),3個(gè),…,n個(gè)(n為正整數(shù))順次排成一列:1,,,,,…,,,…,a1=1,a2=,a3=,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,Sn=a1+a2+…+an,則S2018=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn) A 表示的數(shù)為 6,B 是數(shù)軸上在 A 左側(cè)的一點(diǎn),且 A, B 兩點(diǎn)間的距離為 10.動(dòng)點(diǎn) P 從點(diǎn) A 出發(fā),以每秒 6 個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸 向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為 tt0)秒.

1)數(shù)軸上點(diǎn) B 表示的數(shù)是 ,點(diǎn) P 表示的數(shù)是 (用含 t 的代數(shù) 式表示);

2動(dòng)點(diǎn) Q 從點(diǎn) B 出發(fā),以每秒 4 個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng), 點(diǎn) P、Q 時(shí)出發(fā).求:

①當(dāng)點(diǎn) P 運(yùn)動(dòng)多少秒時(shí),點(diǎn) P 與點(diǎn) Q 相遇?

②當(dāng)點(diǎn) P 運(yùn)動(dòng)多少秒時(shí),點(diǎn) P 與點(diǎn) Q 間的距離為 8 個(gè)單位長(zhǎng)度?

查看答案和解析>>

同步練習(xí)冊(cè)答案