【題目】如圖,矩形ABCD中,對角線AC的垂直平分線EF分別交BC,AD于點EF,若BE=3AF=5,則AC的長為(

A. B. C. 10D. 8

【答案】A

【解析】

連接AE,由線段垂直平分線的性質(zhì)得出OA=OC,AE=CE,證明AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.

解:如圖,連結(jié)AE

設(shè)ACEFO,

依題意,有AOOC,∠AOF=∠COE,∠OAF=∠OCE,

所以,△OAF≌△OCEASA),

所以,ECAF5,

因為EF為線段AC的中垂線,

所以,EAEC5,

BE3,由勾股定理,得:AB4,

所以,AC

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,對角線AC8cm.射線AFAC,垂足為A.動點P從點C出發(fā)在CA上運動,動點Q從點A出發(fā)在射線AF上運動,兩點的運動速度都是2cm/s.若兩點同時出發(fā),多少時間后,四邊形AQBP是特殊四邊形?請說明特殊四邊形的名稱及理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,,,,若點從點出發(fā)以每秒的速度向點運動,設(shè)運動時間為.

(1)若點恰好在的角平分線上,求出此時的值;

(2)若點使得,求出此時的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線與x軸交于A(x1,0)、B(x2,0)兩點,且x1<x2,與y軸交于點C(0,﹣4),其中x1,x2是方程x2﹣4x﹣12=0的兩個根.

(1)求A、B兩點坐標;

(2)求拋物線的解析式;

(3)點M是線段AB上的一個動點(不與A、B兩點重合),過點MMNBC,交AC于點N,連接CM,在M點運動時,CMN的面積是否存在最大值?若存在,求出CMN面積最大時點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結(jié)論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.

其中正確結(jié)論的個數(shù)是(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的對角線交于點,順次聯(lián)結(jié)ABCD各邊中點得到的一個新的四邊形,如果添加下列四個條件中的一個條件:①;②;③;④,可以使這個新的四邊形成為矩形,那么這樣的條件個數(shù)是()

A. 1個;B. 2個;

C. 3個;D. 4個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知二次函數(shù)y=mx2+3mx﹣m的圖象與x軸交于A,B兩點(點A在點B的左側(cè)),頂點D和點B關(guān)于過點A的直線l:y=﹣x﹣對稱.

(1)求A、B兩點的坐標及二次函數(shù)解析式;

(2)如圖2,作直線AD,過點BAD的平行線交直線1于點E,若點P是直線AD上的一動點,點Q是直線AE上的一動點.連接DQ、QP、PE,試求DQ+QP+PE的最小值;若不存在,請說明理由:

(3)將二次函數(shù)圖象向右平移個單位,再向上平移3個單位,平移后的二次函數(shù)圖象上存在一點M,其橫坐標為3,在y軸上是否存在點F,使得∠MAF=45°?若存在,請求出點F坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一筆直的海岸線上有兩個觀測站,的正東方向,千米,在某一時刻,從觀測站測得一艘集裝箱貨船位于北偏西處,同時觀測站測得改集裝箱船位于北偏西方向,問此時該集裝箱船與海岸之間距離約多少千米?(最后結(jié)果保留整數(shù))

(參考數(shù)據(jù):,,,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣2經(jīng)過點A(4,0),B(1,0).

(1)求出拋物線的解析式;

(2)點D是直線AC上方的拋物線上的一點,求△DCA面積的最大值;

(3)P是拋物線上一動點,過PPMx軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理.

查看答案和解析>>

同步練習冊答案