下列給出的條件中,能判定四邊形ABCD是平行四邊形的為(    ).
A.AB=BC,AD=CDB.AB=CD,AD∥BC
C.∠A=∠B,∠C=∠DD.AB∥CD,∠A=∠C
D
根據(jù)平行四邊形的判定可知:
A、若AB=BC,AD=CD,則可以判定四邊形是梯形,故A錯誤,
B、一組對邊平行,另一組對邊相等也有可能是等腰梯形,故B錯誤.
C、此條件下無法判定四邊形的形狀,還可能是等腰梯形,故C錯誤.
D、可判定是平行四邊形的條件,故D正確.故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN.

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN­—∠AMB
=180°—∠B—∠AMB
=∠MAB=∠MAE.
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點,則當(dāng)∠AMN=60°時,結(jié)論AM=MN是否還成立?請說明理由.

(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD…X”,請你作出猜想:當(dāng)∠AMN=        °時,結(jié)論AM=MN仍然成立.
(直接寫出答案,不需要證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,是原點,三點的坐標(biāo)分別
,四邊形是梯形,點同時從原點出發(fā),分別作勻速運(yùn)動,其中點沿向終點運(yùn)動,速度為每秒個單位,點沿向終點運(yùn)動,當(dāng)這兩點有一點到達(dá)自己的終點時,另一點也停止運(yùn)動.
小題1:求直線的解析式.
小題2:設(shè)從出發(fā)起,運(yùn)動了秒.如果點的速度為每秒個單位,試寫出點的坐標(biāo),并寫出此時 的取值范圍.
小題3:設(shè)從出發(fā)起,運(yùn)動了秒.當(dāng),兩點運(yùn)動的路程之和恰好等于梯形的周長的一半,這時,直線能否把梯形的面積也分成相等的兩部分,如有可能,請求出的值;如不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,梯形ABCD中,ADBCBAADDC,點ECB延長線上,BEAD,連接AC、AE.(1)求證:AEAC(2)若ABAC, FBC的中點,試判斷四邊形AFCD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

四邊形ABCD中,對角線A
A.BD相交于點O仍給出下列四組條件:
①∠ABC =∠ADC,AD//BC;②AB="CD,AD=BC" ③AO=CO,BO=DO,④AB//CD,AD=BC其中一定能判定這個四邊形是平行四邊形的條件有.( )
B.1組C.2組 c。3組D.4組

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在梯形ABCD中,AD∥BC,∠DCB=45°,CD =2,BD⊥CD .過點C作CE⊥AB于E,交對角線BD于F.點G為BC中點,連結(jié)EG、AF.
小題1:求EG的長
小題2:求證:CF =AB +AF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,矩形A1B1C1D1的面積為4,順次連結(jié)各邊中點得到四邊形A2B2C2D2,再順次連結(jié)四邊形A2B2C2D2四邊中點得到四邊形A3B3C3D3,依此類推,求四邊形AnBnCnDn的面積是        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,平行四邊形ABCD中 ,BE平分∠ABC,AEED=8:3,CD=24,則平行四邊形ABCD的周長為         。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,矩形ABCD沿著直線BD折疊,使點C落在處,AD于點EAD = 8,AB = 4,則DE的長為        

查看答案和解析>>

同步練習(xí)冊答案