【題目】已知在四邊形中,,,連接,若,,則的長(zhǎng)度為________.

【答案】

【解析】

根據(jù)等邊三角形的判定定理得到△ABC是等邊三角形,求出∠BAC=60°,過(guò)點(diǎn)CCEADE,解直角三角形得到DE=,求得,根據(jù)直角三角形的性質(zhì)得到∠CAD=30°,求得∠ACE=60°,∠BAD=90°,得到∠ACD=90°,根據(jù)勾股定理即可得到結(jié)論.

,

∴△ABC是等邊三角形,

∴∠BAC=60°,

過(guò)點(diǎn)CCEADE

∴∠AEC=CED=90°,

∵∠ADC=60°,

∴∠DCE=30°,

CD=2,

DE=,

,

AC=,

CE=,

∴∠CAD=30°

∴∠ACE=60°,∠BAD=90°

∴∠ACD=90°,

AD=2CD=4

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB6AD8,以頂點(diǎn)A為圓心作半徑為r的圓,若要求另外三個(gè)頂點(diǎn)至少有一個(gè)在圓內(nèi),且至少有一個(gè)在圓外,則r的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小區(qū)開(kāi)展了行車(chē)安全,方便居民的活動(dòng),對(duì)地下車(chē)庫(kù)作了改進(jìn).如圖,這小區(qū)原地下車(chē)庫(kù)的入口處有斜坡AC長(zhǎng)為13米,它的坡度為i12.4,ABBC,為了居民行車(chē)安全,現(xiàn)將斜坡的坡角改為13°,即∠ADC13°(此時(shí)點(diǎn)BC、D在同一直線上).

1)求這個(gè)車(chē)庫(kù)的高度AB;

2)求斜坡改進(jìn)后的起點(diǎn)D與原起點(diǎn)C的距離(結(jié)果精確到0.1米).

(參考數(shù)據(jù):sin13°≈0.225cos13°≈0.974,tan13°≈0.231,cot13°≈4.331

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,點(diǎn)P是半圓上不與點(diǎn)A,B重合的一個(gè)動(dòng)點(diǎn),延長(zhǎng)BP到點(diǎn)C,使PCPB,DAC的中點(diǎn),連接PD,PO

1)求證:△CDP≌△POB;

2)填空:

①若AB4,則四邊形AOPD的最大面積為_______,此時(shí)BD=_______

②連接OD,當(dāng)∠PBA的度數(shù)為________時(shí),四邊形BPDO是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)是常數(shù),)的自變量與函數(shù)值的部分對(duì)應(yīng)值如下表:

0

1

2

且當(dāng)時(shí),與其對(duì)應(yīng)的函數(shù)值.有下列結(jié)論:①;②3是關(guān)于的方程的兩個(gè)根;③.其中,正確結(jié)論的個(gè)數(shù)是( )

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ACBC,以AB為直徑的⊙OAC邊于點(diǎn)DD,點(diǎn)EBC上,連結(jié)BDDE,∠CDE=∠ABD

1)證明:DE是⊙O的切線;

2)若BD24,sinCDE=,求圓⊙O的半徑和AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】12分)如圖,經(jīng)過(guò)點(diǎn)C(0,﹣4)的拋物線)與x軸相交于A(﹣2,0),B兩點(diǎn).

(1)a 0, 0(填“>”或“<”);

(2)若該拋物線關(guān)于直線x=2對(duì)稱(chēng),求拋物線的函數(shù)表達(dá)式;

(3)在(2)的條件下,連接AC,E是拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)E作AC的平行線交x軸于點(diǎn)F.是否存在這樣的點(diǎn)E,使得以A,C,E,F(xiàn)為頂點(diǎn)所組成的四邊形是平行四邊形?若存在,求出滿足條件的點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)Ax軸正半軸上,點(diǎn)By軸正半軸上,O為坐標(biāo)原點(diǎn),OAOB1,過(guò)點(diǎn)OOM1AB于點(diǎn)M1;過(guò)點(diǎn)M1M1A1OA于點(diǎn)A1:過(guò)點(diǎn)A1A1M2AB于點(diǎn)M2;過(guò)點(diǎn)M2M2A2OA于點(diǎn)A2以此類(lèi)推,點(diǎn)M2019的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商城某專(zhuān)賣(mài)店銷(xiāo)售每件成本為40元的商品,從銷(xiāo)售情況中隨機(jī)抽取一些情況制成統(tǒng)計(jì)表如下:(假設(shè)當(dāng)天定的售價(jià)是不變的,且每天銷(xiāo)售情況均服從這種規(guī)律)

每件銷(xiāo)售價(jià)(元)

50

60

70

75

80

85

……

每天售出件數(shù)

300

240

180

150

120

90

……

1)觀察這些數(shù)據(jù),找出每天售出件數(shù)y與每件售價(jià)x(元)之間的函數(shù)關(guān)系,并寫(xiě)出該函數(shù)關(guān)系式;

2)該店原有兩名營(yíng)業(yè)員,但當(dāng)每天售出量超過(guò)168件時(shí),則必須增派一名營(yíng)業(yè)員才能保證營(yíng)業(yè),設(shè)營(yíng)業(yè)員每人每天工資為40元,求每件產(chǎn)品定價(jià)多少元,才能使純利潤(rùn)最大(純利潤(rùn)指的是收入總價(jià)款扣除成本及營(yíng)業(yè)員工資后的余額,其他開(kāi)支不計(jì)).

查看答案和解析>>

同步練習(xí)冊(cè)答案