【題目】閱讀理解題.
定義:如果四邊形的某條對角線平分一組對角,那么把這條對角線叫做“美妙線”,該四邊形叫做“美妙四邊形”.
如圖,在四邊形ABDC中,對角線BC平分∠ACD和∠ABD,那么對角線BC叫“美妙線”,四邊形ABDC就稱為“美妙四邊形”.
問題:
(1)下列四邊形:平行四邊形、矩形、菱形、正方形,其中是“美妙四邊形”的有 個;
(2)四邊形ABCD是“美妙四邊形”,AB=∠BAD=60°,∠ABC=90°,求四邊形ABCD的面積.(畫出圖形并寫出解答過程)
科目:初中數(shù)學 來源: 題型:
【題目】請從以下(A)、(B)兩題中任選一個解答.
(A)已知:拋物線交軸于點和點,交軸于點.
(1)拋物線的解析式為_____________;
(2)點為第一象限拋物線上一點,是否存在使面積最大的點?若不存在,請說明理由,若存在,求出點的坐標;
(3)點的坐標為,連接將線段繞平面內(nèi)某一點旋轉(zhuǎn)得線段(點分別與點對應),使點都在拋物線上,請直接寫點的坐標.
(B)如圖,已知拋物線與軸從左至右交于兩點,與軸交于點.
(1)拋物線的解析式為___________:
(2)是第一象限內(nèi)拋物線上的一個動點(與點不重合),過點作軸于點交直線于點,連接,直線能否把分成面積之比為的兩部分?若能,請求出點的坐標;若不能,請說明理由;
(3)若為拋物線對稱軸上一動點,為直角三角形,請直接寫出點的坐標.
我選做的是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠DAB=60°,AB=5,BC=3,點P從點D出發(fā),沿DC,CB向終點B勻速運動.設點P所走過的路程為x,點P所經(jīng)過的線段與AD,AP所圍成的圖形的面積為y,y隨x的變化而變化.在下列圖象中,能正確反映y與x的函數(shù)關系的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了防范新冠肺炎疫情,某校在網(wǎng)絡平臺開展防疫宣傳,并出了6道選擇題,對甲、乙兩個班級學生(各有40名學生)的答題情況進行統(tǒng)計分析,得到統(tǒng)計表如下:
答對的題數(shù) | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
甲班 | 0 | 2 | 3 | 4 | 17 | 12 | 2 |
乙班 | 0 | 1 | 5 | 3 | 15 | 14 | 2 |
請根據(jù)以上信息,解答下列問題:
(1)甲班學生答對的題數(shù)的眾數(shù)為 ;
(2)若答對的題數(shù)大于或等于5道的為優(yōu)秀,則乙班該次考試的優(yōu)秀率為 ;
(3)從甲、乙兩班答題全對的學生中隨機抽取2人做學習防疫知識心得交流,通過畫樹狀圖或列表法,求抽到的2人來自同一個班級的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)在第二象限的圖象經(jīng)過點B,且,則k的值 ( )
A.4B.8C.-4D.-8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一張矩形紙條ABCD,AB=5cm,BC=2cm,點M,N分別在邊AB,CD上,CN=1cm.現(xiàn)將四邊形BCNM沿MN折疊,使點B,C分別落在點B',C'上.當點B'恰好落在邊CD上時,線段BM的長為_____cm;在點M從點A運動到點B的過程中,若邊MB'與邊CD交于點E,則點E相應運動的路徑長為_____cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,四邊形OACB為菱形,OB在x軸的正半軸上,∠AOB=60°,過點A的反比例函數(shù)y= 的圖像與BC交于點F,則△AOF的面積為 ______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,點D是AB的中點,點P是直線BC上一點,將△BDP沿DP所在的直線翻折后,點B落在B1處,若B1D⊥BC,則點P與點B之間的距離為( )
A.1B.C.1或 3D.或5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)圖象的頂點為D,其圖象與x軸的交點A,B的橫坐標分別為﹣1,3,與y軸負半軸交于點C.以下五個結(jié)論:①2a+b=0;②a+b+c>0;③4a+b+c>0;④只有當a=時,△ABD是等腰直角三角形;⑤使△ACB為等腰三角形的a的值可以有兩個.那么,其中正確的結(jié)論是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com