【題目】如圖,在△ABC中,BD、BE分別是高和角平分線,點(diǎn)F在CA的延長(zhǎng)線上,F(xiàn)H⊥BE交BD于G,交BC于H,下列結(jié)論:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=(∠BAC﹣∠C);④∠BGH=∠ABE+∠C.
其中正確的是( )
A. ①②③ B. ①③④ C. ①②④ D. ①②③④
【答案】D
【解析】
①根據(jù)BD垂直FD,F(xiàn)H⊥BE和∠FGD=∠BGO,證明結(jié)論正確;
②根據(jù)角平分線的定義和三角形外角的性質(zhì)證明結(jié)論正確;
③證明∠DBE=∠BAC-∠C-∠DBE,根據(jù)①的結(jié)論,證明結(jié)論正確;
④根據(jù)角平分線的定義和三角形外角的性質(zhì)證明結(jié)論正確.
①由題意可知,∠FDG=∠BOG=90°,
∵∠FGD=∠BGO,
∴∠DBE=∠F,故①正確;
②∵∠BAF=∠ABC+∠C=2∠EBC+∠C,
∴∠BAF+∠C=2(∠EBC+∠C)=2∠BEF,故②正確;
③∵∠ABD=90°-∠BAC,
∴∠DBE=∠ABE-∠ABD=∠ABE-90°+∠BAC=∠CBD-∠DBE-90°+∠BAC,
∵∠CBD=90°-∠C,
∴∠DBE=∠BAC-∠C-∠DBE,
由①得,∠DBE=∠F,
∴∠F=∠BAC-∠C-∠F,
∴∠F=(∠BAC﹣∠C),故③正確;
④∵∠AEB=∠EBC+∠C,∠EBC =∠ABE,
∴∠AEB=∠ABE+∠C,
又∵BD⊥FC,∠DBE=∠F,
∴∠FGD=∠FEB,
∴∠BGH=∠FGD=∠FEB=∠ABE+∠C,故④正確;
故正確的是①②③④.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某閉合電路中,其兩端電壓恒定,電流I(A)與電阻R(Ω)圖象如圖所示,回答問(wèn)題:
(1)寫(xiě)出電流I與電阻R之間的函數(shù)解析式.
(2)如果一個(gè)用電器的電阻為5Ω,其允許通過(guò)的最大電流是1A,那么這個(gè)用電器接在這個(gè)閉合電路中,會(huì)不會(huì)燒毀?說(shuō)明理由.
(3)若允許的電流不超過(guò)4A時(shí),那么電阻R的取值應(yīng)該控制在什么范圍?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,點(diǎn)O是等邊三角形ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=α, 以OC為邊作等邊三角形OCD,連接AD.
(1)當(dāng)α=150°時(shí),試判斷△AOD的形狀,并說(shuō)明理由;
(2)探究:當(dāng)a為多少度時(shí),△AOD是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且對(duì)稱軸為x=1,點(diǎn)B坐標(biāo)為(﹣1,0).則下面的四個(gè)結(jié)論:
①2a+b=0;②4a﹣2b+c<0;③ac>0;④當(dāng)y<0時(shí),x<﹣1或x>2.
其中正確的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小王沿街勻速行走,發(fā)現(xiàn)每隔6分鐘從背后駛過(guò)一輛18路公交車,每隔3分鐘從迎面駛來(lái)一輛18路公交車.假設(shè)每輛18路公交車行駛速度相同,而且18路公交車總站每隔固定時(shí)間發(fā)一輛車,那么發(fā)車間隔的時(shí)間是( 。
A. 3分鐘 B. 4分鐘 C. 5分鐘 D. 6分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上有A、B、C、D四個(gè)點(diǎn),分別對(duì)應(yīng)的數(shù)為a,b,c,d,且滿足a,b是方程|x+7|=1的兩個(gè)解(a<b),且(c﹣12)2與|d﹣16|互為相反數(shù).
(1)填空:a= 、b= 、c= 、d= ;
(2)若線段AB以3個(gè)單位/秒的速度向右勻速運(yùn)動(dòng),同時(shí)線段CD以1單位長(zhǎng)度/秒向左勻速運(yùn)動(dòng),并設(shè)運(yùn)動(dòng)時(shí)間為t秒,A、B兩點(diǎn)都運(yùn)動(dòng)在CD上(不與C,D兩個(gè)端點(diǎn)重合),若BD=2AC,求t得值;
(3)在(2)的條件下,線段AB,線段CD繼續(xù)運(yùn)動(dòng),當(dāng)點(diǎn)B運(yùn)動(dòng)到點(diǎn)D的右側(cè)時(shí),問(wèn)是否存在時(shí)間t,使BC=3AD?若存在,求t得值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠MON=90°,點(diǎn)A,B分別在射線OM,ON上移動(dòng),∠OAB的平分線與∠OBA的外角平分線交于點(diǎn)C,試猜想:隨著點(diǎn)A,B的移動(dòng),∠ACB的大小是否發(fā)生變化,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com