【題目】如圖所示,點O是等邊三角形ABC內(nèi)一點,AOB=110°BOC=α, OC為邊作等邊三角形OCD,連接AD.

1α=150°時,試判斷AOD的形狀,并說明理由;

2探究:當a為多少度時,AOD是等腰三角形?

【答案】1ADO是直角三角形;2α為110°、125°、140°時,三角形AOD是等腰三角形.

【解析

試題分析:1首先根據(jù)已知條件可以證明BOC≌△ADC,然后利用全等三角形的性質(zhì)可以求出ADO的度數(shù),由此即可判定AOD的形狀;

2利用1和已知條件及等腰三角形的性質(zhì)即可求解.

試題解析:1∵△OCD是等邊三角形,

OC=CD,

ABC是等邊三角形,

BC=AC,

∵∠ACB=OCD=60°

∴∠BCO=ACD,

BOC與ADC中,

,

∴△BOC≌△ADC,

∴∠BOC=ADC,

BOC=α=150°,ODC=60°,

∴∠ADO=150°-60°=90°

∴△ADO是直角三角形;

2設(shè)CBO=CAD=a,ABO=b,BAO=c,CAO=d,

則a+b=60°,b+c=180°-110°=70°,c+d=60°,a+d=50°∠DAO=50°,

b-d=10°,

60°-a-d=10°,

a+d=50°,

CAO=50°,

要使AO=AD,需AOD=ADO,

190°-α=α-60°,

∴α=125°;

要使OA=OD,需OAD=ADO,

∴α-60°=50°

∴α=110°;

要使OD=AD,需OAD=AOD,

190°-α=50°,

∴α=140°

所以當α為110°、125°、140°時,三角形AOD是等腰三角形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在桌面上,有7個完全相同的小正方體堆成的一個幾何體A,如圖所示.

(1) 請畫出這個幾何體A的三視圖.

(2) 若將此幾何體的表面噴上紅漆(放在桌面上的一面不噴),則三個面上是紅色的小正方體有______.

(3) 若現(xiàn)在你的手頭還有一些相同的小正方體可添放在該幾何體上,要保持俯視圖和左視圖不變,則最多可以添加_______個小正方體.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BDBD的延長線于點E.CE=2,延長CE,BA交于點F.

(1)求證:△ADB≌△AFC;

(2)求BD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,BD平分ABC

1)作圖:作BC邊的垂直平分線分別交BC,BD于點EF(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);

2)在(1)的條件下,連接CF,若A=60°,ABD=24°,求ACF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】測量計算是日常生活中常見的問題,如圖,建筑物BC的屋頂有一根旗桿AB,從地面上D點處觀測旗桿頂點A的仰角為50°,觀測旗桿底部B點的仰角為45°,(可用的參考數(shù)據(jù):sin50°≈0.8,tan50°≈1.2)

(1)若已知CD=20米,求建筑物BC的高度;
(2)若已知旗桿的高度AB=5米,求建筑物BC的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y= x2+bx+c與x軸交于A(5,0)、B(﹣1,0)兩點,過點A作直線AC⊥x軸,交直線y=2x于點C;

(1)求該拋物線的解析式;
(2)求點A關(guān)于直線y=2x的對稱點A′的坐標,判定點A′是否在拋物線上,并說明理由;
(3)點P是拋物線上一動點,過點P作y軸的平行線,交線段CA′于點M,是否存在這樣的點P,使四邊形PACM是平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下圖甲是任意一個直角三角形ABC,它的兩條直角邊的邊長分別為a、b,斜邊長為c.如圖乙、丙那樣分別取四個與直角三角形ABC全等的三角形,放在邊長為a+b的正方形內(nèi).

①圖乙和圖丙中(1)(2)(3)是否為正方形?為什么?

②圖中(1)(2)(3)的面積分別是多少?

③圖中(1)(2)的面積之和是多少?

④圖中(1)(2)的面積之和與正方形(3)的面積有什么關(guān)系?為什么?

由此你能得到關(guān)于直角三角形三邊長的關(guān)系嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線l:y=mx+10mx軸負半軸、y軸正半軸分別交于A、B兩點.

(1)當OA=OB時,試確定直線l的函數(shù)表達式;

(2)在(1)的條件下,如圖2,設(shè)Q為直線AB上一點,作直線OQ,過A、B兩點分別作AMOQM,BNOQN,若AM=8,BN=6,求MN的長;

(3)當m取不同的值時,點By軸正半軸上運動,分別以OB、AB為邊,點B為直角頂點在第一、二象限內(nèi)作等腰直角OBF和等腰直角ABE,連EFy軸于P點,如圖3.問:當點B y軸正半軸上運動時,試猜想PB的長是否為定值?若是,請求出其值;若不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1(注:與圖2完全相同),二次函數(shù)y= x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0)兩點,與y軸交于點C.

(1)求該二次函數(shù)的解析式;
(2)設(shè)該拋物線的頂點為D,求△ACD的面積(請在圖1中探索);
(3)若點P,Q同時從A點出發(fā),都以每秒1個單位長度的速度分別沿AB,AC邊運動,其中一點到達端點時,另一點也隨之停止運動,當P,Q運動到t秒時,△APQ沿PQ所在的直線翻折,點A恰好落在拋物線上E點處,請直接判定此時四邊形APEQ的形狀,并求出E點坐標(請在圖2中探索).

查看答案和解析>>

同步練習冊答案