【題目】如圖,有長為24m的籬笆,一面利用墻(墻的最大可用長度a10m),圍成中間隔有一道籬笆的長方形花圃.設(shè)花圃的寬ABxm,面積為Sm2

1)求Sx的函數(shù)關(guān)系式;

2)如果要圍成面積為45m2的花圃,AB的長是多少米?

3)能圍成面積比45 m2更大的花圃嗎?如果能,請(qǐng)求出最大面積,并說明圍法;如果不能,請(qǐng)說明理由.

【答案】1

2)當(dāng)S=45時(shí),有,解得,,∴x=5.

3,∵拋物線開口向下,對(duì)稱軸為x=4,當(dāng)x>4時(shí),yx增大而減小,范圍內(nèi),當(dāng)x=時(shí),S最大,。此時(shí)AB=BC=10.

【解析】1)根據(jù)ABxm,BC就為,利用長方體的面積公式,可求出關(guān)系式.

2)將S=45m代入(1)中關(guān)系式,可求出xAB的長.

3)當(dāng)墻的寬度為最大時(shí),有最大面積的花圃.此故可求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙上的每個(gè)小方格都是邊長為1的正方形,的頂點(diǎn)均在格點(diǎn)上,若點(diǎn)的坐標(biāo)為按要求回答案下列問題:

1)在圖中建立正確的平面直角坐標(biāo)系;

2)根據(jù)所建立的坐標(biāo)系,直接寫出點(diǎn)和點(diǎn)的坐標(biāo):_______________;

3)請(qǐng)畫出關(guān)于軸的對(duì)稱圖形

4)在(3)的條件下,若內(nèi)部任意一點(diǎn),請(qǐng)直接寫出這點(diǎn)在內(nèi)部的對(duì)應(yīng)點(diǎn)的坐標(biāo)__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC是等邊三角形,點(diǎn)D,E分別為邊AB,AC上的點(diǎn),且有AEDB,連接DE,DC

1)如圖1,若AB6,∠DEC90°,求DEC的面積.

2MDE中點(diǎn),當(dāng)D,E分別為AB、AC的中點(diǎn)時(shí),判定CD,AM的數(shù)量關(guān)系并說明理由.

3)如圖2MDE中點(diǎn),當(dāng)D,E分別為AB,AC上的動(dòng)點(diǎn)時(shí),判定CDAM的數(shù)量關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖,下列結(jié)論:

abc>0;3a+c<0;a+b≥am2+bm;a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,則x1+x2=2.

其中正確的有( 。﹤(gè).

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),A點(diǎn)的坐標(biāo)為(4,0)C點(diǎn)的坐標(biāo)為(0,6),點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位的速度沿著O→A→B→C→O的路線移動(dòng)在點(diǎn)P移動(dòng)過程中,當(dāng)P點(diǎn)到x軸的距離為5個(gè)單位時(shí),點(diǎn)P移動(dòng)的時(shí)間為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)解方程:3x(x﹣1)=2﹣2x;

(2)已知二次函數(shù)的圖象以A(﹣1,4)為頂點(diǎn)且過點(diǎn)B(2,﹣5),求該函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次方程2x2+2x﹣1=0的兩個(gè)根為x1,x2,且x1<x2,下列結(jié)論正確的是( 。

A. x1+x2=1 B. x1x2=﹣1 C. |x1|<|x2| D. x12+x1=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,∠ACB=90°,AC=BC=2,將直角邊ACA點(diǎn)逆時(shí)針旋轉(zhuǎn)至AC,連接BC′,EBC的中點(diǎn),連接CE,CE的最大值為( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過點(diǎn)AAEBC,垂足為E,連接DEF為線段DE上一點(diǎn),且AFE=B

1)求證:ADF∽△DEC;

2)若AB=8,AD=6AF=4,求AE的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案