某公司有A型產(chǎn)品40件,B型產(chǎn)品60件,分配給下屬甲、乙兩個(gè)商店銷售,其中70件給甲店,30件給乙店,且都能賣完.兩商店銷售這兩種產(chǎn)品每件的利潤(元)如下表:
A型利潤 B型利潤
甲店 200 170
乙店 160 150
(1)設(shè)分配給甲店A型產(chǎn)品W=200x+170(70-x)+160(40-x)+150(x-10)件,這家公司賣出這100件產(chǎn)品的總利潤為W(元),求W關(guān)于x的函數(shù)關(guān)系式,并求出x的取值范圍;
(2)若公司要求總利潤不低于17560元,有多少種不同分配方案,哪種方案總利潤最大,并求出最大值.
分析:(1)由W=200x+170(70-x)+160(40-x)+150(x-10),化簡即可求得W關(guān)于x的函數(shù)關(guān)系式,根據(jù)題意可得不等式組:
x≥0
70-x≥0
40-x≥0
x-10≥0
,解此不等式組,即可求得x的取值范圍;
(2)根據(jù)題意可得:20x+16800≥17560,又由10≤x≤40,即可求得x的取值范圍,則可得分配方案,由一次函數(shù)的增減性,即可求得最大值.
解答:解:(1)∵w=200x+170(70-x)+160(40-x)+150(x-10)=20x+16800,
又∵
x≥0
70-x≥0
40-x≥0
x-10≥0
,
∴10≤x≤40,
∴w=20x+16800(10≤x≤40)

(2)∵20x+16800≥17560,
x≥38,
∴38≤x≤40,
∴有3種不同方案.
∵k=20>0,
當(dāng)x=40時(shí),ymax=17600,
分配甲店A型產(chǎn)品40件,B型30件,分配乙店A型0件,
B型30件時(shí)總利潤最大.最大利潤為17600元.
點(diǎn)評:主要考查利用一次函數(shù)的實(shí)際應(yīng)用問題與不等式組的求解方法.此題難度適中,解題的關(guān)鍵是理解題意,掌握一次函數(shù)的性質(zhì)應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某公司有A型產(chǎn)品40件,B型產(chǎn)品60件,分配給下屬甲、乙兩個(gè)商店銷售,其中70件給甲店,30件給乙店,且都能賣完.兩商店銷售這兩種產(chǎn)品每件的利潤(元)如下表:
A型利潤 B型利潤
甲店 200 170
乙店 160 150
(1)設(shè)分配給甲店A型產(chǎn)品x件,這家公司賣出這100件產(chǎn)品的總利潤為W(元),求W關(guān)于x的函數(shù)關(guān)系式,并求出x的取值范圍;
(2)若公司要求總利潤不低于17560元,說明有多少種不同分配方案,并將各種方案設(shè)計(jì)出來;
(3)為了促銷,公司決定僅對甲店A型產(chǎn)品讓利銷售,每件讓利a元,但讓利后A型產(chǎn)品的每件利潤仍高于甲店B型產(chǎn)品的每件利潤.甲店的B型產(chǎn)品以及乙店的A,B型產(chǎn)品的每件利潤不變,問該公司又如何設(shè)計(jì)分配方案,使總利潤達(dá)到最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某公司有A型產(chǎn)品40件,B型產(chǎn)品60件,分配給下屬甲,乙兩個(gè)商店銷售,其中70件給甲店,30件給乙店,且都能賣完,兩商店銷售這兩種產(chǎn)品每件的利潤(元)如下表:
A型利潤 B型利潤
甲店 200 170
乙店 160 150
(1)設(shè)分配給甲店A型產(chǎn)品x件;
①甲店B型產(chǎn)品有
(70-x)
(70-x)
件;
乙店A型產(chǎn)品有
(40-x)
(40-x)
件,B型產(chǎn)品有
(x-10)
(x-10)
件.
②這家公司賣出這100件產(chǎn)品的總利潤為W(元),求W關(guān)于x的函數(shù)關(guān)系式,并求出x的是取值范圍.
(2)公司決定對甲店A型產(chǎn)品降價(jià)銷售,每件利潤減少a元,但降價(jià)后A型產(chǎn)品的每件利潤仍高于甲店B型產(chǎn)品的每件利潤,甲店的B型產(chǎn)品以及乙店的A,B型產(chǎn)品的每件利潤不變,問該公司又如何設(shè)計(jì)分配方案,使總利潤達(dá)到最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某公司有A型產(chǎn)品40件,B型產(chǎn)品60件,分配給下屬甲、乙兩個(gè)商店銷售,其中70件給甲店,30件給乙店,且都能賣完.兩商店銷售這兩種產(chǎn)品每件的利潤(元)如下表:
A型利潤 B型利潤
甲店 200 170
乙店 160 150
設(shè)分配給甲店A型產(chǎn)品x件,這家公司賣出這100件產(chǎn)品的總利潤為W(元)
(1)求W關(guān)于x的函數(shù)關(guān)系式,并求出x的取值范圍
(2)若公司要求總利潤不低于17560元,說明有多少種不同分配方案?
(3)實(shí)際銷售過程中,公司發(fā)現(xiàn)這批產(chǎn)品尤其是A型產(chǎn)品很暢銷,便決定對甲店的最后21件A型產(chǎn)品每件提價(jià)a元銷售(a為正整數(shù)).兩店全部銷售完畢后結(jié)果的總利潤為18000元,求a的值.并寫出公司這100件產(chǎn)品對甲乙兩店是如何分配的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年中考數(shù)學(xué)總復(fù)習(xí)專題:應(yīng)用題(解析版) 題型:解答題

(2008•黃石)某公司有A型產(chǎn)品40件,B型產(chǎn)品60件,分配給下屬甲、乙兩個(gè)商店銷售,其中70件給甲店,30件給乙店,且都能賣完.兩商店銷售這兩種產(chǎn)品每件的利潤(元)如下表:
A型利潤B型利潤
甲店200170
乙店160150
(1)設(shè)分配給甲店A型產(chǎn)品x件,這家公司賣出這100件產(chǎn)品的總利潤為W(元),求W關(guān)于x的函數(shù)關(guān)系式,并求出x的取值范圍;
(2)若公司要求總利潤不低于17560元,說明有多少種不同分配方案,并將各種方案設(shè)計(jì)出來;
(3)為了促銷,公司決定僅對甲店A型產(chǎn)品讓利銷售,每件讓利a元,但讓利后A型產(chǎn)品的每件利潤仍高于甲店B型產(chǎn)品的每件利潤.甲店的B型產(chǎn)品以及乙店的A,B型產(chǎn)品的每件利潤不變,問該公司又如何設(shè)計(jì)分配方案,使總利潤達(dá)到最大?

查看答案和解析>>

同步練習(xí)冊答案