【題目】一個圓錐的側(cè)面積是2πcm2 , 它的側(cè)面展開圖是一個半圓,則這個圓錐的高為cm.

【答案】
【解析】解:設(shè)圓錐的母線長為R, π×R2÷2=2π,
解得:R=2,
∴圓錐側(cè)面展開圖的弧長為:2π,
∴圓錐的底面圓半徑是2π÷2π=1,
∴圓錐的高為
所以答案是
【考點精析】利用幾何體的展開圖和圓錐的相關(guān)計算對題目進行判斷即可得到答案,需要熟知沿多面體的棱將多面體剪開成平面圖形,若干個平面圖形也可以圍成一個多面體;同一個多面體沿不同的棱剪開,得到的平面展開圖是不一樣的,就是說:同一個立體圖形可以有多種不同的展開圖;圓錐側(cè)面展開圖是一個扇形,這個扇形的半徑稱為圓錐的母線;圓錐側(cè)面積S=πrl;V圓錐=1/3πR2h.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,∠DCE=118°,∠AEC的角平分線EF與GF相交于點F,∠BGF=132°,則∠F的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點,拋物線y=﹣x2+bx+c(c>0)的頂點為D,與y軸的交點為C,過點C作CA∥x軸交拋物線于點A,在AC延長線上取點B,使BC= AC,連接OA,OB,BD和AD.

(1)若點A的坐標(biāo)是(﹣4,4).
①求b,c的值;
②試判斷四邊形AOBD的形狀,并說明理由;
(2)是否存在這樣的點A,使得四邊形AOBD是矩形?若存在,請直接寫出一個符合條件的點A的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的頂點A、C分別在x、y軸的正半軸上,點D為BC邊上的點,反比例函數(shù)y= (k≠0)在第一象限內(nèi)的圖象經(jīng)過點D(m,2)和AB邊上的點E(3, ).
(1)求反比例函數(shù)的表達式和m的值;
(2)將矩形OABC的進行折疊,使點O于點D重合,折痕分別與x軸、y軸正半軸交于點F,G,求折痕FG所在直線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一條12個單位長度的線段分成三條線段,其中一條線段成為4個單位長度,另兩條線段長都是單位長度的整數(shù)倍.

(1)不同分段得到的三條線段能組成多少個不全等的三角形?用直尺和圓規(guī)作這些三角形(用給定的單位長度,不寫作法,保留作圖痕跡);
(2)求出(1)中所作三角形外接圓的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列做法正確的是(  )

A. 方程=1+去分母,2(2x-1)=1+3(x-3)

B. 方程4x=7x-8移項,4x-7x=8

C. 方程3(5x-1)-2(2x-3)=7去括號,15x-3-4x-6=7

D. 方程1-x=3x+移項,-x-3x=-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD⊥BC于點D,D為BC的中點,連接AB,∠ABC的平分線交AD于點O,連結(jié)OC,若∠AOC=125°,則∠ABC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一塊矩形木板,它的右上角有一個圓洞,現(xiàn)設(shè)想將它改造成火鍋餐桌桌面,要求木板大小不變,且使圓洞的圓心在矩形桌面的對角線的交點上.木工師傅想了一個巧妙的辦法,他測量了PQ與圓洞的切點K到點B的距離及相關(guān)數(shù)據(jù)(單位:cm),從點N沿折線NF﹣FM(NF∥BC,F(xiàn)M∥AB)切割,如圖1所示.圖2中的矩形EFGH是切割后的兩塊木板拼接成符合要求的矩形桌面示意圖(不重疊,無縫隙,不記損耗),則CN,AM的長分別是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,二次函數(shù)y=ax2﹣a(b﹣1)x﹣ab(其中b<﹣1)的圖象與x軸交于點A、B,與y軸交于點C(0,1),過點C的直線交x軸于點D(2,0),交拋物線于另一點E.

(1)用b的代數(shù)式表示a,則a=;
(2)過點A作直線CD的垂線AH,垂足為點H.若點H恰好在拋物線的對稱軸上,求該二次函數(shù)的表達式;
(3)如圖②,在(2)的條件下,點P是x軸負半軸上的一個動點,OP=m.在點P左側(cè)的x軸上取點F,使PF=1.過點P作PQ⊥x軸,交線段CE于點Q,延長線段PQ到點G,連接EG、DG.若tan∠GDP=tan∠FQP+tan∠QDP,試判斷是否存在m的值,使△FPQ的面積和△EGQ的面積相等?若存在求出m的值,若不存在則說明理由.

查看答案和解析>>

同步練習(xí)冊答案